Preparation of Al2O3-SiO2 composite aerogels and their Cu2+ absorption properties

Xiao-guang Liu , Qiu-shuo Mao , Yue Jiang , Yan Li , Jia-lin Sun , Fei-xue Huang

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (2) : 317 -324.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (2) : 317 -324. DOI: 10.1007/s12613-020-2111-3
Article

Preparation of Al2O3-SiO2 composite aerogels and their Cu2+ absorption properties

Author information +
History +
PDF

Abstract

In order to remediate heavy metal ions from waste water, Al2O3-SiO2 composite aerogels are prepared via a sol—gel and an organic solvent sublimation drying method. Various characterisation techniques have been employed including X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscope (SEM), Energy-dispersion X-ray spectroscopy (EDX), Brunauer—Emmett—Teller (BET) N2 adsoprtion isotherm, and atomic absorption spectrometer (AAS). XRD and FTIR suggest that the aerogels are composed of mainly Al2O3 and minor SiO2. They have a high specific surface area (827.544 m2/g) and high porosity (86.0%) with a pore diameter of ∼20 nm. Their microstructures show that the distribution of Al, Si, and O is homogeneous. The aerogels can remove ∼99% Cu2+ within ∼40 min and then reach the equilibrium uptake (∼69 mg/g). Preliminary calculations show that the Cu2+ uptake by the aerogels follows pseudo second-order kinetics where chemical sorption may take effect owing largely to the high surface area, high porosity, and abundant functional groups, such as Al-OH and Si-OH, in the aerogel network. The prepared aerogels may serve as efficient absorbents for Cu2+ removal.

Keywords

heavy metal ion / aerogel / absorption / organic solvent sublimation drying / specific surface area / porosity

Cite this article

Download citation ▾
Xiao-guang Liu, Qiu-shuo Mao, Yue Jiang, Yan Li, Jia-lin Sun, Fei-xue Huang. Preparation of Al2O3-SiO2 composite aerogels and their Cu2+ absorption properties. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(2): 317-324 DOI:10.1007/s12613-020-2111-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Maleki H. Recent advances in aerogels for environmental remediation applications: A review. Chem. Eng. J., 2016, 300, 98.

[2]

Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J., 2016, 306, 1116.

[3]

Narayani M, Shetty KV. Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review. Crit. Rev. Environ. Sci. Technol., 2013, 43(9): 955.

[4]

Gode F, Pehlivan E. Removal of chromium(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature. J. Hazard. Mater., 2006, 136(2): 330.

[5]

Fu FL, Wang Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage., 2011, 92(3): 407.

[6]

Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzace JM, Mallouk TE. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ. Sci. Technol., 2008, 42(7): 2600.

[7]

Yang D, Zhao XY, Zou XY, Zhou ZY, Jiang ZY. Removing Cr(VI) in water via visible-light photocatalytic reduction over Cr-doped SrTiO3 nonopletes. Chemosphere, 2019, 215, 586.

[8]

Li J, Wang XX, Zhao GX, Chen CL, Chai ZF, Alsaedi A, Hayat T, Wang XK. Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev., 2018, 47(7): 2322.

[9]

Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwall S, Tkachev AG, Gupta VK. Adsorption of heavy metals on conventional nanostructured materials for waste water treatment purposes: A review. Ecotoxicol. Environ. Saf., 2018, 148, 702.

[10]

Q.X. Zheng, Li Z.L., X.X. Miao, Li J.H., Y.F. Huang, H.N. Xia, and C.H. Xiong, Preparation and characterization of novel organic chelating resin and its application in recovery of Zn(II) from aqueous solutions, Appl. Organomet. Chem., 31(2017), art. No. e3546.

[11]

Mi X, Huang GB, Xie WS, Wang W, Liu Y, Gao JP. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon, 2012, 50(13): 4856.

[12]

Vikrant K, Kim KH. Nano-materials for the adsorptive treatment of Hg(II) ions from water. Chem. Eng. J., 2019, 358, 264.

[13]

Sun YB, Yang SB, Chen Y, Ding CC, Cheng WC, Wang XK. Adsorption and desorption of U(VI) on functionalized graphene gxides: A combined experimental and theoretical study. Environ Sci. Technol., 2015, 49(7): 4255.

[14]

B. Cai, V. Sayevich, N. Gaponik, and A. Eychmuller, Emerging hierarchical aerogels: Self-assembly of metal and semiconductor nanocrystals, Adv. Mater., 30(2018), No. 33, art. No. 1707518.

[15]

Moner-Girona M, Roig A, Molins E, Llibre J. Sol—gel route to direct formation of silica aerogel microparticles using supercritical solvents. J. Sol Gel Sci. Technol., 2003, 26(1): 645.

[16]

Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH. Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem. Mater., 2005, 17(2): 395.

[17]

Hammouda LB, Mejri I, Younes MK, Ghorbel A. Aegerter MA, Leventis N, Koebel MM. ZrO2 aerogels. Aerogels Handbook, 2011, New York, Springer, 127.

[18]

Hirashima H. Aegerter MA, Leventis N, Koebel MM. Preparation of TiO2 aerogels-like materials under ambient pressure. Aerogels Handbook, 2011, New York, Springer, 145.

[19]

Pierre AC, Rigacci A. Aegerter MA, Leventis N, Koebel MM. SiO2 aerogels. Aerogels Handbook, 2011, New York, Springer, 21.

[20]

Anderson AM, Carroll MK. Aegerter MA, Leventis N, Koebel MM. Hydrophobic silica aerogels: Review of synthesis, properties and applications. Aerogels Handbook, 2011, New York, Springer, 47.

[21]

Mulik S, Sotiriou-Leventis C. Aegerter MA, Leventis N, Koebel MM. Resorcinol-formaldehyde aerogels. Aerogels Handbook, 2011, New York, Springer, 215.

[22]

Rigacci A, Achard P. Aegerter MA, Leventis N, Koebel MM. Cellulosic and polyurethane aerogels. Aerogel Handbook, 2011, New York, Springer, 191.

[23]

Horikawa T, Hayashi J, Muroyama K. Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin. Carbon, 2004, 42(1): 169.

[24]

Worsley MA, Satcher JH Jr. Baumann TF. Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes. Lagmmmr, 2008, 24(17): 9763.

[25]

Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH Jr. Baumann TF. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc., 2010, 132(40): 14067.

[26]

Wu DC, Xu F, Sun B, Fu RW, He HK, Matyjaszewski K. Design and preparation of porous polymers. Chem. Rev., 2012, 112(7): 3959.

[27]

Brock SL, Yu HT. Aegerter MA, Leventis N, Koebel MM. Chalcogenide aerogels. Aerogels Handbook, 2011, New York, Springer, 367.

[28]

Mohanan JL, Arachchige IU, Brock SL. Porous semiconductor chalcogenide aerogels. Scincee, 2005, 307(5708): 397.

[29]

Zu GQ, Shen J, Wang WQ, Zou LP, Lian Y, Zhang ZH, Liu B, Zhang F. Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts. Chem. Mater., 2014, 26(19): 5761.

[30]

Wang TW, Sun H, Long JW, Wang YZ, Schiraldi D. Biobased poly(furfuryl alcohol)/clay aerogel composite prepared by a freeze-drying process. ACS Sustainable Chem. Eng., 2016, 4(5): 2601.

[31]

Pan YL, Cheng XD, Zhou T, Gong LL, Zhang HP. Spray freeze-dried monolithic silica aerogel based on water-glass with thermal super-insulating properties. Mater. Lett., 2018, 229, 265.

[32]

Ren LL, Cui SM, Cao FC, Guo QH. An easy way to prepare monolithic inorganic oxide aerogels. Angew. Chem. Int. Ed, 2014, 53(38): 10147.

[33]

Liao JJ, Gao PZ, Xu L, Feng J. A study of morphological properties of SiO2 aerogels obtained at different temperatures. J. Adv. Ceram, 2018, 7(4): 307.

[34]

Yu LY, Xu ZL, Shen HM, Yang H. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. J. Membr. Sci., 2009, 337(1–2): 257.

[35]

Chong ASM, Zhao XS. Functionalization of SBA-15 with APTES and characterization of functionalized materials. J. Phys. Chem B, 2003, 107(46): 12650.

[36]

Janackovic D, Jakanovic V, Kostic-Gvozdenovic L, Uskokovic D. Synthesis of mullite nanostructured spherical powder by ultrasonic spray pyrolysis. Nanostruct. Mater., 1998, 10(3): 341.

[37]

Medina M, Tapia J, Pacheco S, Espinosa M, Rodriguez R. Adsorption of lead ions in aqueous solution using silicaalumina nanoparticles. J. Non-Cryst. Solids, 2010, 356(6–8): 383.

[38]

Ji XF, Zhou Q, Qiu GB, Peng B, Guo M, Zhang M. Synthesis of an alumina enriched Al2O3-SiO2 aerogel: Reinforcement and ambient pressure drying. J. Non-Cryst. Solids, 2017, 471, 160.

[39]

Juhl SJ, Dunn NJH, Carroll MK, Anderson AM, Bruno BA, Madero JE, Bono MS Jr. Epoxide-assisted alumina aerogels by rapid supercritical extraction. J. Non-Cryst. Solids, 2015, 426, 141.

[40]

Shaygin AS, Kozhevnikov IV, Gerasimov EY, Andreev AS, Lapina OB, Martyanov ON. The impact of Si/Al ratio on properties of aluminosilicate aerogels. Microporous Mesoporous Mater., 2017, 251, 105.

[41]

Wu XD, Shao GF, Cui S, Wang L, Shen XD. Synthesis of a novel Al2O3-SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram. Int., 2016, 42(1): 874.

[42]

Wang L, Zhang J, Zhao R, Li Y, Li C, Zhang CL. Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: Kinetics, isotherms, pH, and ionic strength studies. Bioresource Technol., 2010, 101(15): 5808.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/