Effect of Co substitution on the structural, dielectric and optical properties of KBiFe2O5

K. Chandrakanta , R. Jena , P. Pal , Md.F. Abdullah , S.D. Kaushik , A.K. Singh

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (11) : 1861 -1867.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (11) : 1861 -1867. DOI: 10.1007/s12613-020-2110-4
Article

Effect of Co substitution on the structural, dielectric and optical properties of KBiFe2O5

Author information +
History +
PDF

Abstract

Cobalt (Co)-modified brownmillerite KBiFe2O5 (KBFO; [KBiFe2(1-x)Co2xO5 (x = 0, 0.05)]) polycrystalline is synthesized following the solid-state reaction route. Rietveld refinement of X-ray diffraction data confirmed the phase purity of KBFO and KBiFe1.9Co0.1O5 (KBFCO). The optical bandgap energy (E g) of KBFO decreased from 1.59 to 1.51 eV because of Co substitution. The decrease in bandgap can be attributed to the tilting of the Fe-O tetrahedral structure of KBFCO. The observed room-temperature Raman peaks of KBFCO shifted by 3 cm-1 toward a lower wavenumber than that of KBFO. The shift in Raman active modes can be attributed to the change in the bond angles and bond lengths of the Fe-O tetrahedral structure and modification in response to oxygen deficiency in KBFO because of Co doping. Compared with that of KBFO, the frequency-dependent dielectric constant and dielectric loss of KBFCO decrease at room temperature, which is a consequence of the reduction in oxygen migration and modification in response to vibrational modes present in the sample.

Keywords

brownmillerite / rietveld refinement / Raman spectroscopy / bandgap

Cite this article

Download citation ▾
K. Chandrakanta, R. Jena, P. Pal, Md.F. Abdullah, S.D. Kaushik, A.K. Singh. Effect of Co substitution on the structural, dielectric and optical properties of KBiFe2O5. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(11): 1861-1867 DOI:10.1007/s12613-020-2110-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fiebig M, Lottermoser T, Meier D, Trassin M. The evolution of multiferroics. Nat. Rev. Mater., 2016, 1, 16046.

[2]

Mettout B, Tolédano P, Sombra ASB, Furtado Filho AFG, do Nascimento JPC, Santos da Silva MA, Gisse P, Vasseur H. Magnetoelectric, photovoltaic, and magnetophotovoltaic effects in KBiFe2O5. Phys. Rev. B, 2016, 93(19): 195123.

[3]

Zhang GH, Wu H, Li GB, Huang QZ, Yang CY, Huang FQ, Liao FH, Lin JH. New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect. Sci. Rep., 2013, 3, 1265.

[4]

Jalaja MA, Dutta S. Switchable photovoltaic properties of multiferroic KBiFe2O5. Mater. Res. Bull., 2017, 88, 9.

[5]

Vavilapalli DS, Srikanti K, Mannam R, Tiwari B, K MK, Rao MSR, Singh S. Photoactive brownmillerite multiferroic KBiFe2O5 and its potential application in sunlight-driven photocatalysis. ACS Omega, 2018, 3(12): 16643.

[6]

Jalaja MA, Dutta S. Ferroelectrics and multiferroics for next generation photovoltaics. Adv. Mater. Lett., 2015, 6(7): 568.

[7]

Li J, Zhang GH, Fan LK, Huang GQ, Gao ZP, Zeng T. Enhanced visible-light-driven photocatalytic activity of multiferroic KBiFe2O5 by adjusting pH value. J. Inorg. Mater., 2018, 33(7): 805.

[8]

Vavilapalli DS, Melvin AA, Kavita S, Yadav AK, Jha SN, Bhattacharyya D, Sarma SC, Peter SC, Ramachandra Rao MS, Singh S. Multifunctional brownmillerite KBiFe2O5: Structural, magneto-dielectric, optical, photoelectrochemical studies and enhanced photocatalytic activity over perovskite BiFeO3. Sol. Energy Mater. Sol. Cells, 2019, 200, 109940.

[9]

Xu QY, Zai HF, Wu D, Qiu T, Xu MX. The magnetic properties of Bi(Fe0.95Co0.05)O3 ceramics. Appl. Phys. Lett., 2009, 95(11): 112510.

[10]

Chiang YS, Tu CS, Chen PY, Chen CS, Anthoniappen J, Ting Y, Chan TS, Schmidt VH. Magnetic and phonon transitions in B-site Co doped BiFeO3 ceramics. Ceram. Int., 2016, 42(11): 13104.

[11]

Khan U, Adeela N, Javed K, Riaz S, Ali H, Iqbal M, Han XF, Naseem S. Influence of cobalt doping on structural and magnetic properties of BiFeO3 nanoparticles. J. Nanopart. Res., 2015, 17, 429.

[12]

Rietveld HM. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., 1969, 2(2): 65.

[13]

Zhang M, Wang ZH, Lin SY, Wang Y, Pan YH. Investigation on a new multiferroic compound KBiFe2O5: Structural. optical, 2017, electricalandmagneticpropertiesJ.AlloysCompd.699, 561.

[14]

Zhai XZ, Deng HM, Zhou WL, Yang PX, Chu JH, Zheng Z. Structural, optical and magnetic tunability in KBiFe2O5 multiferroics. RSC Adv., 2015, 5(100): 82351.

[15]

Rhaman MM, Matin MA, Hossain MN, Mozahid FA, Hakim MA, Islam MF. Bandgap engineering of cobaltdoped bismuth ferrite nanoparticles for photovoltaic applications. Bull. Mater. Sci., 2019, 42, 190.

[16]

Wood DL, Tauc J. Weak absorption tails in amorphous semiconductors. Phys. Rev. B, 1972, 5(8): 3144.

[17]

Zhai XZ, Deng HM, Zhou WL, Yang PX, Chu JH, Zheng Z. Optical and magnetic properties of KBiFe2O5 thin films fabricated by chemical solution deposition. Mater. Lett., 2015, 161, 423.

[18]

Rai R, Molli M. Effect of La doping on structural, magnetic, and optical properties of KBiFe2O5. J. Mater. Sci.: Mater. Electron., 2019, 30(4): 4318.

[19]

Sarkar A, Khan GG. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale, 2019, 11(8): 3414.

[20]

Zhang GH, Liu FL, Gu TT, Zhao YS, Li NN, Yang WG, Feng SH. Ferroelectrics: enhanced ferroelectric and visible-light photoelectric properties in multiferroic KBiFe2O5 via pressure-induced phase transition (Adv. Electron. Mater. 3/2017). Adv. Electron. Mater., 2017, 3, 3.

[21]

Mao WW, Wang XF, Han YM, Li XA, Li YT, Wang YF, Ma YW, Feng XM, Yang T, Yang JP, Huang W. Effect of Ln (Ln = La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles. J. Alloys Compd., 2014, 584, 520.

[22]

Singh A, Chatterjee R, Mishra SK, Krishna PSR, Chaplot SL. Origin of large dielectric constant in La modified BiFeO3-PbTiO3 multiferroic. J. Appl. Phys., 2012, 111(1): 014113.

[23]

Liu JJ, Duan CG, Yin WG, Mei WN, Smith RW, Hardy JR. Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12. Phys. Rev. B, 2004, 70(14): 144106.

[24]

Hoque MM, Dutta A, Kumar S, Sinha TP. Dielectric relaxation and conductivity of Ba(Mg1/3Ta2/3)o3 and Ba(Zn1/3 Ta2/3)o3. J. Mater. Sci. Technol., 2014, 30(4): 311.

[25]

Si AL, Kiani M, Rizwan S. Structural, magnetic and dielectric properties of Sm3+ and Mn2+ co-doped BiFeO3 nanoparticles. J. Powder Metall. Min., 2017, 6(1): 1.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/