Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings

Alexander M. Klyushnikov , Rosa I. Gulyaeva , Evgeniy N. Selivanov , Sergey M. Pikalov

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (9) : 1469 -1477.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (9) : 1469 -1477. DOI: 10.1007/s12613-020-2109-x
Article

Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings

Author information +
History +
PDF

Abstract

X-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetry, differential scanning calorimetry, and mass spectrometry have been used to study the products of nickel-containing pyrrhotite tailings oxidation by oxygen in the air. The kinetic triplets of oxidation, namely, activation energy (E a), pre-exponential factor (A), and reaction model (f(α)) being a function of the conversion degree (α), were adjusted by regression analysis. In case of a two-stage process representation, the first step proceeds under autocatalysis control and ends at α = 0.42. The kinetic triplet in the first step is E a = 262.2 kJ/mol, lg A = 14.53 s−1, and f(α) = (1 − α)4.11(1 + 1.51 × 10−4 α). For the second step, the process is controlled by the two-dimensional diffusion of the reactants in the layer of oxidation products. The kinetic triplet in the second step is E a = 215.0 kJ/mol, lg A = 10.28 s−1, and f(α) = (−ln(1 − α))−1. The obtained empirical formulae for the rate of pyrrhotite tailings oxidation reliably describe the macro-mechanism of the process and can be used to design automatization systems for roasting these materials.

Keywords

pyrrhotite tailings / oxidation / thermogravimetry / kinetics / mechanism

Cite this article

Download citation ▾
Alexander M. Klyushnikov, Rosa I. Gulyaeva, Evgeniy N. Selivanov, Sergey M. Pikalov. Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(9): 1469-1477 DOI:10.1007/s12613-020-2109-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Warner AEM, Díaz CM, Dalvi AD, Mackey PJ, Tarasov AV, Jones RT. JOM world nonferrous smelter survey Part IV: Nickel: Sulfide. JOM, 2007, 59(4): 58.

[2]

Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, 2011, Oxford, Elsevier

[3]

Benzaazoua M, Bouzahzah H, Taha Y, Kormos L, Kabombo D, Lessard F, Bussière B, Demers I, Kongolo M. Integrated environmental management of pyrrhotite tailings at Raglan Mine: Part 1 challenges of desulphurization process and reactivity prediction. J. Cleaner Prod., 2017, 162, 86.

[4]

Peek E, Barnes A, Tuzun A. Nickeliferous pyrrhotite—“Waste or resource?”. Miner. Eng., 2011, 24(7): 625.

[5]

Kovalev VN. Modern technology concentration platinum metals from industrial waste by processing of sulphide copper-nickel ores. J. Min. Inst., 2011, 189, 284.

[6]

Naftal MN, Shestakova RD, Petrov AF, Asanova II, Dmitriev IV. Development of the efficient technology of autoclave processing of sulfide concentrates with high pyrrhotite content. Tsvetn. Met., 2003, 8, 38.

[7]

Selivanov EN, Klyushnikov AM, Gulyaeva RI. Application of sulfide copper ores oxidizing roasting products as sulfidizing agent during melting nickel raw materials to matte. Metallurgist, 2019, 63(7–8): 867.

[8]

Yu DW, Utigard TA, Barati M. Fluidized bed selective oxidation-sulfation roasting of nickel sulfide concentrate: Part II. sulfation roasting. Metall. Mater. Trans. B, 2014, 45(2): 662.

[9]

Kennedy T, Sturman BT. The oxidation of iron(II) sulphide. J. Therm. Anal., 1975, 8(2): 329.

[10]

Coombs PG, Munir ZA. The mechanism of oxidation of ferrous sulfide (FeS) powders in the range of 648 to 923 K. Metall. Trans. B, 1989, 20(5): 661.

[11]

Gulyaeva RI, Selivanov EN, Vershinin AD. Nonisothermal oxidation of pyrrhotines. Russ. Metall. (Me).), 2003, 2003(4): 299.

[12]

Dunn JG, Kelly CE. A TG/MS and DTA study of the oxidation of pentlandite. J. Therm. Anal., 1980, 18(1): 147.

[13]

Yu DW, Utigard TA. TG/DTA study on the oxidation of nickel concentrate. Thermochim. Acta, 2012, 533, 56.

[14]

Asaki Z, Matsumoto K, Tanabe T, Kondo Y. Oxidation of dense iron sulfide. Metall. Trans. B, 1983, 14(1): 109.

[15]

Asaki Z, Kondo Y. Oxidation kinetics of iron sulfide in the form of dense plate, pellet and single particle. J. Therm. Anal., 1989, 35(6): 1751.

[16]

Alksnis A, Li B, Elliott R, Barati M. Kinetics of oxidation of pyrrhotite. Extraction 2018, 2018, Cham, Springer, 403.

[17]

Yatsenko VN, Portov AB, Yertseva LN, Tsemekhman LS. Features of the kinetics and mechanism of the pyrrhotite oxidation by gas mixtures containing oxygen. Tsvetn. Met., 2004, 4, 46.

[18]

Xia F, Pring A, Brugger J. Understanding the mechanism and kinetics of pentlandite oxidation in extractive pyrometallurgy of nickel. Miner. Eng., 2012, 28, 11.

[19]

Bamford CH, Tipper CFH. Reactions in the Solid State, 1980, Amsterdam, Elsevier

[20]

Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta, 2011, 520(1–2): 1.

[21]

Metso Outotec, HSC Chemistry, Metso Outotec, Helsinki [2006-06-12]. https://www.outotec.com/HSC

[22]

ICDD, Powder Diffraction File™ (PDF®) Search, JCPDS International Centre for Diffraction Data, Pennsylvania [2019-09-05]. https://www.icdd.com/index.php/pdfsearch

[23]

ASTM International. ASTM Standard E112–13. Standard Test Methods for Determining Average Grain Size, 2013, West Conshohocken, ASTM International

[24]

Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy, 2012, 97, 491.

[25]

Arshad MA, Maaroufi A. Recent advances in kinetics and mechanisms of condensed phase processes: A mini-review. Rev. Adv. Mater. Sci., 2017, 51(2): 177.

[26]

The NETZSCH Group, NETZSCH Advanced Software version 2006.08, The NETZSCH Group, Selb [2019-09-05]. https://www.therm-soft.com

[27]

Haldar SK, Tišljar J. Introduction to Mineralogy and Petrology, 2014, Amsterdam, Elsevier, 81.

[28]

Kelly DP, Vaughan DJ. Pyrrhotine-pentlandite ore textures: A mechanistic approach. Mineral. Mag., 1983, 47(345): 453.

[29]

Vaughan DJ, Craig JR. Mineral Chemistry of Metal Sulfides, 1978, Cambridge, Cambridge University Press

[30]

Dunn JG, Mackey LC. The measurement of ignition temperatures and extents of reaction on iron and iron-nickel sulfides. J. Therm. Anal., 1991, 37(9): 2143.

[31]

Opfermann J. Kinetic analysis using multivariate non-linear regression. I. basic concepts. J. Therm. Anal. Calorim., 2000, 60(2): 641.

AI Summary AI Mindmap
PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/