Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel

Okan Unal , Erfan Maleki , Remzi Varol

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 657 -664.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 657 -664. DOI: 10.1007/s12613-020-2097-x
Article

Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel

Author information +
History +
PDF

Abstract

This study aims to draw an exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions. The pulsed plasma nitriding treatment was applied to AISI 304 austenitic stainless steel at different temperatures and durations. Results reveal that nitriding depth increased as process temperature and duration increase. The nitriding depth remarkably increased at 475°C for 8 h and at 550°C for 4 h. An austenite structure was transformed into a metastable nitrogen-oversaturated body-centered tetragonal expanded austenite (S-phase) during low-temperature plasma nitriding. The S-phase was converted to CrN precipitation at 475°C for 8 h and at 550°C for 4 h. Surface hardness and fatigue limit increased through plasma nitriding regardless of process conditions. The best surface hardness and fatigue limit were obtained at 550°C for 4 h because of the occurrence of CrN precipitation.

Keywords

pulsed plasma nitriding / S-phase / fatigue / nitrided layer

Cite this article

Download citation ▾
Okan Unal, Erfan Maleki, Remzi Varol. Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(4): 657-664 DOI:10.1007/s12613-020-2097-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shen YF, Li XX, Sun X, Wang YD, Zuo L. Twinning and martensite in a 304 austenitic stainless steel. Mater. Sci. Eng. A, 2012, 552, 514.

[2]

Unal O, Varol R. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening. Appl. Surf. Sci., 2015, 351, 289.

[3]

Shen HY, Wang L. Corrosion resistance and electrical conductivity of plasma nitrided titanium. Int. J. Hydrogen Energy, 2021, 46(19): 11084.

[4]

Liu S, Gao SY, Zhou YF, Xing XL, Hou XR, Yang YL, Yang QX. A research on the microstructure evolution of austenite stainless steel by surface mechanical attrition treatment. Mater. Sci. Eng. A, 2014, 617, 127.

[5]

Zhan K, Jiang CH, Ji V. Effect of prestress state on surface layer characteristic of S30432 austenitic stainless steel in shot peening process. Mater. Des., 2012, 42, 89.

[6]

Unal O. Optimization of shot peening parameters by response surface methodology. Surf. Coat. Technol., 2016, 305, 99.

[7]

Unal O, Maleki E. Shot peening optimization with complex decision-making tool: Multi criteria decision-making. Measurement, 2018, 125, 133.

[8]

O. Unal, E. Maleki, I. Kocabas, H. Yilmaz, and F. Husem, Investigation of nanostructured surface layer of severe shot peened AISI 1045 steel via response surface methodology, Measurement, 148(2019), art. No. 106960.

[9]

Amanov A, Karimbaev R, Maleki E, Unal O, Pyun YS, Amanov T. Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304. Surf Coat. Technol., 2019, 358, 695.

[10]

Unal O, Maleki E, Varol R. Plasma nitriding of gradient structured AISI 304 at low temperature: Shot peening as a catalyst treatment. Vacuum, 2019, 164, 194.

[11]

Unal O, Maleki E, Varol R. Effect of severe shot peening and ultra-low temperature plasma nitriding on Ti-6Al—4V alloy. Vacuum, 2018, 150, 69.

[12]

Ceschini L, Chiavari C, Lanzoni E, Martini C. Low-temperature carburised AISI 316L austenitic stainless steel: Wear and corrosion behaviour. Mater. Des., 2012, 38, 154.

[13]

Ou KL, Chou HH, Liu CM, Peng PW. Surface modification of austenitic stainless steel with plasma nitriding for biomedical applications. Surf. Coat. Technol., 2011, 206(6): 1142.

[14]

Lin KJ, Li XY, Dong HS, Guo P, Gu DD. Nitrogen mass transfer and surface layer formation during the active screen plasma nitriding of austenitic stainless steels. Vacuum, 2018, 148, 224.

[15]

Zhu YD, Yao JW, Yan MF, Zhang YX, Wang YX, Yang Y, Yang L. High temperature plasma nitriding to modify Ti coated C17200 Cu surface: Microstructure and tribological properties. Vacuum, 2018, 147, 163.

[16]

Schuster J, Bruder E, Müller C. Plasma nitriding of steels with severely plastic deformed surfaces. J. Mater. Sci., 2012, 47(22): 7908.

[17]

Kashaev N, Stock HR, Mayr P. Nitriding of Ti-6%Al—4%V alloy in the plasma of an intensified glow discharge. Met. Sci. Heat Treat., 2004, 46, 294.

[18]

Nikolov K, Bunk K, Jung A, Kaestner P, Bräuer G, Klages CP. High-efficient surface modification of thin austenitic stainless steel sheets applying short-time plasma nitriding by means of strip hollow cathode method for plasma thermochemical treatment. Vacuum, 2014, 110, 106.

[19]

Qin L, Tian LH, Fan AL, Tang B, Xu Z. Fatigue behavior of surface modified Ti-6Al—4V alloy by double glow discharge plasma alloying. Surf. Coat. Technol, 2007, 201(9–11): 5282.

[20]

Z. Huang, Z.X. Guo, L. Liu, Y.Y. Guo, J. Chen, Z. Zhang, J.L. Li, Y. Li, Y.W. Zhou, and Y.S. Liang, Structure and corrosion behavior of ultra-thick nitrided layer produced by plasma nitriding of austenitic stainless steel, Surf. Coat. Technol., 405(2021), art. No. 126689.

[21]

Corujeira Gallo S, Dong H. On the fundamental mechanisms of active screen plasma nitriding. Vacuum, 2009, 84(2): 321.

[22]

Aghajani H, Torshizi M, Soltanieh M. A new model for growth mechanism of nitride layers in plasma nitriding of AISI H11 hot work tool steel. Vacuum, 2017, 141, 97.

[23]

Yazdani A, Soltanieh M, Aghajani H. Active screen plasma nitriding of Al using an iron cage: Characterization and evaluation. Vacuum, 2015, 122, 127.

[24]

Zhao YH, Yu BH, Dong LM, Du H, Xiao JQ. Low-pressure arc plasma-assisted nitriding of AISI 304 stainless steel. Surf. Coat. Technol., 2012, 210, 90.

[25]

Morgiel J, Wierzchoń T. New estimate of phase sequence in diffusive layer formed on plasma nitrided Ti-6Al-4V alloy. Surf. Coat. Technol., 2014, 259, 473.

[26]

R. Kertscher and S.F. Brunatto, On the kinetics of nitride and diffusion layer growth in niobium plasma nitriding, Surf. Coat. Technol., 401(2020), art. No. 126220.

[27]

Fernández de Ara J, Almandoz E, Palacio JF, Fuentes GG. Simultaneous ageing and plasma nitriding of grade 300 maraging steel: How working pressure determines the effective nitrogen diffusion into narrow cavities. Surf. Coat. Technol., 2017, 317, 64.

[28]

T.T. Peng, Y. Chen, X.L. Liu, M.H. Wu, Y.Y. Lu, and J. Hu, Phase constitution control of plasma nitrided layer and its effect on wear behavior under different loads, Surf. Coat. Technol., 403(2020), art. No. 126403.

[29]

Shen L, Wang L, Wang YZ, Wang CH. Plasma nitriding of AISI 304 austenitic stainless steel with pre-shot peening. Surf. Coat. Technol., 2010, 204(20): 3222.

[30]

Valencia-Alvarado R, de la Piedad-Beneitez A, de la Rosa-Vázquez J, López-Callejas R, Barocio SR, Godoy-Cabrera OG, Mercado-Cabrera A, Peña-Eguiluz R, Muñoz-Castro A E. Nitriding of AISI 304 stainless steel in a 85% H2/15% N2 mixture with an inductively coupled plasma source. Vacuum, 2008, 82(12): 1360.

[31]

Díaz-Guillén JC, Naeem M, Acevedo-Dávila JL, Hdz-García HM, Iqbal J, Khan MA, Mayen J. Improved mechanical properties, wear and corrosion resistance of 316L steel by homogeneous chromium nitride layer synthesis using plasma nitriding. J. Mater. Eng. Perform., 2020, 29(2): 877.

[32]

Lu SJ, Zhao XB, Wang SK, Li JC, Wei W, Hu J. Performance enhancement by plasma nitriding at low gas pressure for 304 austenitic stainless steel. Vacuum, 2017, 145, 334.

[33]

Valencia-Alvarado R, de la Piedad-Beneitez A, de la Rosa-Vázquez J, López-Callejas R, Barocio SR, Godoy-Cabrera OG, Mercado-Cabrera A, Peña-Eguiluz R, Muñoz-Castro A E. γ N-shift as a function of N2 content in AISI 304 nitriding. Vacuum, 2007, 81(11–12): 1434.

[34]

Nikolov K, Köster K, Kaestner P, Bräuer G, Klages CP. Strip hollow cathode method for plasma thermochemical treatment for surface modification of thin metal strips: Plasma nitriding of austenitic stainless steel sheets for bipolar plates. Vacuum, 2014, 102, 31.

[35]

de la Piedad-Beneitez A, Valencia-Alvarado R, López-Callejas R, Rojas-Olmedo I A, Peña-Eguiluz R, Mercado-Cabrera A, Barocio SR, Muñoz-Castro AE, Rodríguez-Méndez BG. Optimized AISI 304 steel nitriding in inductive RF N2-H2 plasmas. Vacuum, 2011, 85(12): 1149.

[36]

Alphonsa J, Padsala BA, Chauhan BJ, Jhala G, Rayjada PA, Chauhan N, Soman SN, Raole PM. Plasma nitriding on welded joints of AISI 304 stainless steel. Surf. Coat. Technol., 2013, 228(Suppl. 1): s306.

[37]

Wang SK, Cai W, Li JC, Wei W, Hu J. A novel rapid D.C. plasma nitriding at low gas pressure for 304 austenitic stainless steel. Mater. Lett., 2013, 105, 47.

[38]

Díaz-Guillén JC, Vargas-Gutiérrez G, Granda-Gutiérrez EE, Zamarripa-Piña JS, Pérez-Aguilar S I, Candelas-Ramírez J, Álvarez-Contreras L. Surface properties of Fe4N compounds layer on aisi 4340 steel modified by pulsed plasma nitriding. J. Mater. Sci. Technol., 2013, 29(3): 287.

[39]

Asgari M, Barnoush A, Johnsen R, Hoel R. Microstructural characterization of pulsed plasma nitrided 316L stainless steel. Mater. Sci. Eng. A, 2011, 529, 425.

[40]

Feugeas JN, Gomez BJ, Sánchez G, Ferron J, Craievich A. Time evolution of Cr and N on AISI 304 steel surface during pulsed plasma ion nitriding. Thin Solid Films, 2003, 424(1): 130.

[41]

Liang W. Surface modification of AISI 304 austenitic stainless steel by plasma nitriding. Appl. Surf. Sci., 2003, 211(1–4): 308.

[42]

Balusamy T, Sankara Narayanan TSN, Ravichandran K, Park IS, Lee MH. Plasma nitriding of AISI 304 stainless steel: Role of surface mechanical attrition treatment. Mater. Charact., 2013, 85, 38.

[43]

Galdikas A, Moskalioviene T. Modeling of stress induced nitrogen diffusion in nitrided stainless steel. Surf. Coat. Technol., 2011, 205(12): 3742.

[44]

Moskalioviene T, Galdikas A, Rivière JP, Pichon L. Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding. Surf. Coat. Technol., 2011, 205(10): 3301.

[45]

G.P. Singh, A. Joseph, P.M. Raole, P.K. Barhai, and S. Mukherjee, Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel, Sci. Technol. Adv. Mater., 9(2008), No. 2, art. No. 025007.

[46]

Xia YQ, Hu JH, Zhou F, Lin YM, Qiao YL, Xu T. Friction and wear behavior of plasma nitrided 1Cr18Ni9Ti austenitic stainless steel under lubrication condition. Mater. Sci. Eng. A, 2005, 402(1–2): 135.

[47]

Lin LH, Chen SC, Wu CZ, Hung JM, Ou KL. Microstructure and antibacterial properties of microwave plasma nitrided layers on biomedical stainless steels. Appl. Surf. Sci., 2011, 257(17): 7375.

[48]

Gontijo LC, Machado R, Miola EJ, Casteletti LC, Alcantara NG, Nascente PAP. Study of the S phase formed on plasma-nitrided AISI 316L stainless steel. Mater. Sci. Eng. A, 2006, 431(1–2): 315.

[49]

Pye D. Practical Nitriding and Ferritic Carburising, 2003, Ohio, ASM International

[50]

Ashrafizadeh F. Influence of plasma and gas nitriding on fatigue resistance of plain carbon (Ck45) steel. Surf. Coat. Technol., 2003, 174–175, 1196.

[51]

Riazi H, Ashrafizadeh F, Hosseini SR, Ghomashchi R. Influence of simultaneous aging and plasma nitriding on fatigue performance of 17–4 PH stainless steel. Mater. Sci. Eng. A, 2017, 703, 262.

[52]

Wu B, Wang PP, Pyoun YS, Zhang JX, Murakami RI. Study on the fatigue properties of plasma nitriding S45C with a pre-ultrasonic nanocrystal surface modification process. Surf. Coat. Technol., 2013, 216, 191.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/