Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel
Okan Unal , Erfan Maleki , Remzi Varol
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 657 -664.
Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel
This study aims to draw an exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions. The pulsed plasma nitriding treatment was applied to AISI 304 austenitic stainless steel at different temperatures and durations. Results reveal that nitriding depth increased as process temperature and duration increase. The nitriding depth remarkably increased at 475°C for 8 h and at 550°C for 4 h. An austenite structure was transformed into a metastable nitrogen-oversaturated body-centered tetragonal expanded austenite (S-phase) during low-temperature plasma nitriding. The S-phase was converted to CrN precipitation at 475°C for 8 h and at 550°C for 4 h. Surface hardness and fatigue limit increased through plasma nitriding regardless of process conditions. The best surface hardness and fatigue limit were obtained at 550°C for 4 h because of the occurrence of CrN precipitation.
pulsed plasma nitriding / S-phase / fatigue / nitrided layer
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
O. Unal, E. Maleki, I. Kocabas, H. Yilmaz, and F. Husem, Investigation of nanostructured surface layer of severe shot peened AISI 1045 steel via response surface methodology, Measurement, 148(2019), art. No. 106960. |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
Z. Huang, Z.X. Guo, L. Liu, Y.Y. Guo, J. Chen, Z. Zhang, J.L. Li, Y. Li, Y.W. Zhou, and Y.S. Liang, Structure and corrosion behavior of ultra-thick nitrided layer produced by plasma nitriding of austenitic stainless steel, Surf. Coat. Technol., 405(2021), art. No. 126689. |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
R. Kertscher and S.F. Brunatto, On the kinetics of nitride and diffusion layer growth in niobium plasma nitriding, Surf. Coat. Technol., 401(2020), art. No. 126220. |
| [27] |
|
| [28] |
T.T. Peng, Y. Chen, X.L. Liu, M.H. Wu, Y.Y. Lu, and J. Hu, Phase constitution control of plasma nitrided layer and its effect on wear behavior under different loads, Surf. Coat. Technol., 403(2020), art. No. 126403. |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
G.P. Singh, A. Joseph, P.M. Raole, P.K. Barhai, and S. Mukherjee, Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel, Sci. Technol. Adv. Mater., 9(2008), No. 2, art. No. 025007. |
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
/
| 〈 |
|
〉 |