Preparation and photocatalytic property of Fe2O3/ZnO composites with superhydrophobicity
Muntadher I. Rahmah , Raad S. Sabry , Wisam J. Aziz
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 1072 -1079.
Preparation and photocatalytic property of Fe2O3/ZnO composites with superhydrophobicity
A facile approach was developed to construct Fe2O3-modified ZnO micro/nanostructures with excellent superhydrophobicity and photocatalytic activities. The effects of stearic acid (SA) and Fe2O3 on the morphological characteristics, water contact angle (WCA), and photocatalytic degradation were investigated. Superhydrophobicity results showed that WCA increased from 144° ± 2° to 154° ± 2° when the weight of SA increased from 5 to 20 mg because of the formation of a hierarchical or rough structure. Furthermore, Fe2O3-modified ZnO micro/nanostructure surfaces before and after SA treatment (20 mg) were chosen to evaluate the photodegradation of methylene blue (MB) dye under the support of visible light. MB degraded after 80 min of irradiation, and its photodegradation efficiencies were 91.5% at the superhydrophobic state and 92% at the hydrophilic state. This improvement in photocatalytic activity at both states might be attributed to an increase in surface area and improvement in charge carrier separation.
nano composites / stearic acid / superhydrophobic / photocatalytic / self-cleaning
| [1] |
|
| [2] |
F. Geyer, M. D’Acunzi, A. Sharifi-Aghili, A. Saal, N. Gao, A. Kaltbeitzel, T.F. Sloot, R. Berger, H.J. Butt, and D. Vollmer, When and how self-cleaning of superhydrophobic surfaces works, Sci. Adv., 6(2020), No. 3, art. No. eaaw9727. |
| [3] |
Z.G. Le, C.B. Xiong, J.Y. Gong, X. Wu, T. Pan, Z.S. Chen, and Z.B. Xie, Self-cleaning isotype g-C3N4 heterojunction for efficient photocatalytic reduction of hexavalent uranium under visible light, Environ. Pollut., 260(2020), art. No. 114070. |
| [4] |
|
| [5] |
A.K. Behera, R.N. Viswanath, C. Lakshmanan, T. Mathews, and M. Kamruddin, Synthesis of silicon nanowalls exhibiting excellent antireflectivity and near super-hydrophobicity, Nano-Struct. Nano-Objects, 21(2020), art. No. 100424. |
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
C.S. Chen, W. Mei, C. Wang, Z. Yang, X.A. Chen, X.H. Chen, and T.G. Liu, Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight, J. Alloys Compd., 826(2020), art. No. 154122. |
| [17] |
C.S. Chen, X.Y. Liu, Q. Fang, X.H. Chen, T.G. Liu, and M.S. Zhang, Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight, Vacuum, 174(2020), art. No. 109198. |
| [18] |
R.D. Suryavanshi, S.V. Mohite, A.A. Bagade, and K.Y. Rajpure, Photoelectrocatalytic activity of spray deposited Fe2O3/ZnO photoelectrode for degradation of salicylic acid and methyl orange dye under solar radiation, Mater. Sci. Eng. B, 248(2019), art. No. 114386. |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
W.P. Cai, G.T. Duan, and Y. Li, Hierarchical Micro/Nanostructured Materials: Fabrication, Properties, and Applications, CRC Press, 2014. |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
/
| 〈 |
|
〉 |