First-principles calculations of structural, elastic and electronic properties of (TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure

Zhi-sheng Nong , Hao-yu Wang , Jing-chuan Zhu

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1405 -1414.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1405 -1414. DOI: 10.1007/s12613-020-2095-z
Article

First-principles calculations of structural, elastic and electronic properties of (TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure

Author information +
History +
PDF

Abstract

To clarify the effect of pressure on a (TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure, we used first-principles calculations to theoretically investigate the structural, elastic, and electronic properties of this alloy at different pressures. The results show that the calculated equilibrium lattice parameters are consistent with the experimental results, and that the normalized structural parameters of lattice constants and volume decrease whereas the total enthalpy difference ΔE and elastic constants increase with increasing pressure. The (TaNb)0.67(HfZrTi)0.33 alloy exhibits mechanical stability at high pressures lower than 400 GPa. At high pressure, the bulk modulus B shows larger values than the shear modulus G, and the alloy exhibits an obvious anisotropic feature at pressures ranging from 30 to 70 GPa. Our analysis of the electronic structures reveals that the atomic orbitals are occupied by the electrons change due to the compression of the crystal lattices under the effect of high pressure, which results in a decrease in the total density of states and a wider electron energy level. This factor is favorable for zero resistance.

Keywords

first-principles calculations / elastic property / electronic structure / density of states / high-entropy alloys / high pressure

Cite this article

Download citation ▾
Zhi-sheng Nong, Hao-yu Wang, Jing-chuan Zhu. First-principles calculations of structural, elastic and electronic properties of (TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(10): 1405-1414 DOI:10.1007/s12613-020-2095-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6, 299.

[2]

Cantor B, Chang ITH, Knight P, Vincent AJB. Micro-structural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 2004, 375–377, 213.

[3]

Vaidya M, Guruvidyathri K, Murty BS. Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys. J. Alloys Compd., 2019, 774, 856.

[4]

Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater., 2017, 122, 448.

[5]

Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., 2014, 61, 1.

[6]

Christofidou KA, Pickering EJ, Orsatti P, Mignanelli PM, Slater TJA, Stone HJ, Jones NG. On the influence of Mn on the phase stability of the CrMnxFeCoNi high entropy alloys. Intermetallics, 2018, 92, 84.

[7]

Kumar N, Ying Q, Nie X, Mishra RS, Tang Z, Liaw PK, Brennan RE, Doherty KJ, Cho KC. High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy. Mater. Des., 2015, 86, 598.

[8]

Ma SG, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng. A, 2012, 532, 480.

[9]

Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd., 2011, 509(20): 6043.

[10]

Liu CM, Wang HM, Zhang SQ, Tang HB, Zhang AL. Microstructure and oxidation behavior of new refractory high entropy alloys. J. Alloys Compd., 2014, 583, 162.

[11]

Zou Y, Maiti S, Steurer W, Spolenak R. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater., 2014, 65, 85.

[12]

Yao HW, Qiao JW, Hawk JA, Zhou HF, Chen MW, Gao MC. Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloys Compd., 2017, 696, 1139.

[13]

Poulia A, Georgatis E, Lekatou A, Karantzalis AE. Microstructure and wear behavior of a refractory high entropy alloy. Int. J. Refract Met. Hard Mater., 2016, 57, 50.

[14]

Senkov ON, Senkova SV, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater., 2014, 68, 214.

[15]

Guo J, Wang HH, Von Rohr F, Wang Z, Cai S, Zhou YZ, Yang K, Li AG, Jiang S, Wu Q, Cava RJ, Sun LL. Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa. Proc. Nat. Acad. Sci. U.S.A., 2017, 114(50): 13144.

[16]

B.L. Yin and W.A. Curtin, First-principles-based prediction of yield strength in the RhIrPdPtNiCu high-entropy alloy, npj Comput. Mater., 5(2019), art. No. 14.

[17]

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigen value formalism. Phys. Rev. B, 1990, 41(11): 7892.

[18]

Marlo M, Milman V. Density-functional study of bulk and surface propertiesof titanium nitride using different exchange-correlation functionals. Phys. Rev. B, 2000, 62, 2899.

[19]

White JA, Bird DM. Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations. Phys. Rev. B, 1994, 50(7): 4954.

[20]

Pack JD, Monkhorst HJ. Special points for Brillouin-zone integrations-areply. Phys. Rev. B, 1977, 16(4): 1748.

[21]

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188.

[22]

E. Delczeg-Czirjak, E. Nurmi, K. Kokko, and L. Vitos, Effect of long-range order on elastic properties of Pd0.5Ag0.5 alloy from first principles, Phys. Rev. B, 84(2011), No. 9, art. No. 094205.

[23]

Nong ZS, Zhu JC, Zhao RD. Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys. Intermetallics, 2017, 86, 134.

[24]

Yao HZ, Ouyang LZ, Ching WY. Ab initio calculation of elastic constants of ceramic crystals. J. Am. Ceram. Soc., 2007, 90(10): 3194.

[25]

Ma LS, Duan YH, Li RY. Structural, elastic and electronic properties of C14-type Al2M (M = Mg, Ca, Sr and Ba) Laves phases. Physica B, 2017, 507, 147.

[26]

Nye JF. Physical Properties of Crystals, 1985, Oxford, Oxford University Press

[27]

Broyden CG, Dennis JE, Moré JJ. On the local and superlinear convergence of Quasi-Newton methods. JMA Appl. Math., 1973, 12(3): 223.

[28]

von Rohr F, Winiarski MJ, Tao J, Klimczuk T, Cava RJ. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor. Proc. Nat. Acad. Sci. U.S.A., 2016, 113(46): 7144.

[29]

Born M, Huang K. Dynamical Theory of Crystal Lattices, 1954, Oxford, Clarendon Press

[30]

I.R. Shein and A.L. Ivanovskii, Elastic properties of mono-and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations, J. Phys.: Condnns. Mater., 20(2008), No. 41, art. No. 415218.

[31]

Pugh SF. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London Edinburgh Dublin Philos. Mag. J. Sci., 1954, 45(367): 823.

[32]

Li P, Ma LS, Peng MJ, Shu BP, Duan YH. Elastic anisotropies and thermal conductivities of WB2 diborides in different crystal structures: A first-principles calculation. J. Alloys Compd, 2018, 747, 905.

[33]

H.S. Li, Y. Cao, S.G. Zhou, P.X. Zhu, and J.C. Zhu, Site preferences and effects of X (X = Mn, Fe, Co, Cu) on the properties of NiAl: A first-principles study, Mod. Phys. Lett. B, 30(2016), No. 9, art. No. 1650133.

[34]

Bardeen J, Cooper LN, Schrieffer JR. Theory of superconductivity. Phys. Rev., 1957, 108(5): 1175.

[35]

K. Jasiewicz, B. Wiendlocha, K. Górnicka, K. Gofryk, M. Gazda, T. Klimczuk, and J. Tobola, Pressure effects on the electronic structure and superconductivity of (TaNb)0.67(HfZrTi)0.33 high entropy alloy, Phys. Rev. B, 100(2019), No. 18, art. No. 184503.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/