Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel

Yang Liu , Yan-hui Sun , Hao-tian Wu

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 1011 -1021.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 1011 -1021. DOI: 10.1007/s12613-020-2092-2
Article

Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel

Author information +
History +
PDF

Abstract

It is well-known that the surface quality of the niobium microalloy profiled billet directly affects the comprehensive mechanical properties of the H-beam. The effects of chromium on the γ/α phase transformation and high-temperature mechanical properties of Nb-microalloyed steel were studied by Gleeble tensile and high-temperature in-situ observation experiments. Results indicated that the starting temperature of the γα phase transformation decreases with increasing Cr content. The hot ductility of Nb-microalloyed steel is improved by adding 0.12wt% Cr. Chromium atoms inhibit the diffusion of carbon atoms, which reduces the thickness of grain boundary ferrite. The number fractions of high-angle grain boundaries increase with increasing chromium content. In particular, the proportion is up to 48.7% when the Cr content is 0.12wt%. The high-angle grain boundaries hinder the crack propagation and improve the ductility of Nb-microalloyed steel.

Keywords

phase transformation / hot ductility / chromium / high-angle grain boundaries / grain boundary ferrite

Cite this article

Download citation ▾
Yang Liu, Yan-hui Sun, Hao-tian Wu. Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(6): 1011-1021 DOI:10.1007/s12613-020-2092-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siwecki T, Eliasson J, Lagneborg R, Hutchinson B. Vanadium microalloyed bainitic hot strip steels. ISIJ Int., 2010, 50(5): 760.

[2]

Mejia I, Altamirano G, Bedolla-Jacuinde A, Cabrera JM. Effect of boron on the hot ductility behavior of a low carbon advanced ultra-high strength steel (A-UHSS). Metall. Mater. Trans. A, 2013, 44(11): 5165.

[3]

Wu D, Wang FM, Cheng J, Li CR. Effect of Nb and V on the continuous cooling transformation of undercooled austenite in Cr-Mo-V steel for brake discs. Int. J. Miner. Metall. Mater., 2018, 25(8): 892.

[4]

Lin L, Li BS, Zhu GM, Kang YL, Liu RD. Effects of Nb on the microstructure and mechanical properties of 38MnB5 steel. Int. J. Miner. Metall. Mater., 2018, 25(10): 1181.

[5]

Chen K, Rui SY, Wang F, Dong JX, Yao ZH. Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk. Int. J. Miner. Metall. Mater., 2019, 26(7): 889.

[6]

Hurtado-Delgado E, Morales RD. Hot ductility and fracture mechanisms of a C-Mn-Nb-Al steel. Metall. Mater. Trans. B, 2001, 32(5): 919.

[7]

Maehara Y, Ohmori Y. The precipitation of A1N and NbC and the hot ductility of low carbon steels. Mater. Sci. Eng., 1984, 62(1): 109.

[8]

Nakata H, Yasunaka H. Influence of carbo-nitride and proeutectoid ferrite on hot ductility of Nb, V containing steel. Tetsu-to-Hagane., 1988, 74(7): 1290.

[9]

Suzuki KI, Miyagawa S, Saito Y, Shiotani K. Effect of microalloyed nitride forming elements on precipitation of carbonitride and high temperature ductility of continuously cast low carbon Nb containing steel slab. ISIJ Int., 1995, 35(1): 34.

[10]

Comineli O, Abushosha R, Mintz B. Influence of titanium and nitrogen on hot ductility of C-Mn-Nb-Al steels. Mater. Sci. Technol., 1999, 15(9): 1058.

[11]

S.K. Kim, N.J. Kim, and J.S. Kim, Effect of boron on the hot ductility of Nb-containing steel, Metall. Mater. Trans. A, 33(2002), No. 3, art. No. 701.

[12]

López-Chipres E, Mejía I, Maldonado C, Bedolla-Jac-uinde A, Cabrera JM. Hot ductility behavior of boron microalloyed steels. Mater. Sci. Eng. A, 2007, 460–461, 464.

[13]

Zarandi F, Yue S. The effect of boron on hot ductility of Nb-microalloyed steels. ISIJ Int., 2006, 46(4): 591.

[14]

Hannerz NE. Critical hot plasticity and transverse cracking in continuous slab casting with particular reference to composition. Trans. Iron Steel Inst. Jpn., 1985, 25(2): 149.

[15]

Mintz B, Yue S, Jonas JJ. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting. Int. Mater. Rev., 1991, 36(1): 187.

[16]

Chown LH, Cornish LA. Investigation of hot ductility in Al-killed boron steels. Mater. Sci. Eng. A, 2008, 494(1–2): 263.

[17]

Luo BW, Zhou J, Bai PP, Zheng SQ, An T, Wen XL. Comparative study on the corrosion behavior of X52, 3Cr, and 13Cr steel in an O2-H2O-CO2 system: Products, reaction kinetics, and pitting sensitivity. Int. J. Miner. Metall. Mater., 2017, 24(6): 646.

[18]

Li Y, Chen MD, Li JK, Song LF, Zhang X, Liu ZY. Flow-accelerated corrosion behavior of 13Cr stainless steel in a wet gas environment containing CO2. Int. J. Miner. Metall. Mater., 2018, 25(7): 779.

[19]

Zhang LN, Xiong XL, Yan Y, Gao KW, Qiao LJ, Su YJ. Atomic modeling for the initial stage of chromium passivation. Int. J. Miner. Metall. Mater., 2019, 26(6): 732.

[20]

Chen SC, Ye HX, Lin XQ. Effect of rare earth and alloying elements on the thermal conductivity of austenitic medium manganese steel. Int. J. Miner. Metall. Mater., 2017, 24(6): 670.

[21]

Hirsch TK, Da Silva Rocha A, Nunes RM. Characterization of local residual stress inhomogeneities in combined wire drawing processes of AISI 1045 steel bars. Int. J. Adv. Manuf. Technol., 2014, 70, 661.

[22]

Song HR, Kang EG, Nam WJ. Effect of alloying elements on work hardening behavior in cold drawn hyper-eutectoid steel wires. Mater. Sci. Eng. A, 2007, 449–451, 1147.

[23]

Kim SJ, Lee CG, Lee TH, Oh CS. Effect of Cu, Cr and Ni on mechanical properties of 0.15wt% C TRIP-aided cold rolled steels. Scripta Mater., 2003, 48(5): 539.

[24]

Hossain R, Pahlevani F, Sahajwalla V. Effect of small addition of Cr on stability of retained austenite in high carbon steel. Mater. Charact., 2017, 125, 114.

[25]

Leem DS, Lee YD, Jun JH, Choi CS. Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3%Si martensitic stainless steel. Scripta Mater., 2001, 45(7): 767.

[26]

Bilmes PD, Solari M, Llorente CL. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals. Mater. Charact., 2001, 46(4): 285.

[27]

Ai Dawood M, Ei Mahallawi IS, Abd Ei Azim ME, Ei Koussy MR. Thermal aging of 16Cr-5Ni-1Mo stainless steel Part 1—Microstructural analysis. Mater. Sci. Technol., 2004, 20(3): 363.

[28]

Song YY, Ping DH, Yin FX, Li XY, Li YY. Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel. Mater. Sci. Eng. A, 2010, 527(3): 614.

[29]

Jacques PJ, Furnémont Q, Mertens A, Delannay F. On the sources of work hardening in multiphase steels assisted by transformation-induced plasticity. Philos. Mag. A, 2001, 81(7): 1789.

[30]

Yin H, Emi T, Shibata H. Morphological instability of δ-ferrite/γ-austenite interphase boundary in low carbon steels. Acta Mater., 1999, 47(5): 1523.

[31]

Liu ZZ, Kobayashi Y, Yang J, Nagai K, Kuwabara M.In-situ” observation of the δ/γ phase transformation on the surface of low carbon steel containing phosphorus at various cooling rates. ISIJ Int., 2006, 46(6): 847.

[32]

Dippenaar RJ, Phelan DJ. Delta-ferrite recovery structures in low-carbon steels. Metall. Mater. Trans. B, 2003, 34(5): 495.

[33]

Hasegawa H, Nakajima K, Mizoguchi S.In-situ” observation of phase transformation and MnS precipitation in Fe-Si alloys. Tetsu- to- Hagane., 2001, 87(6): 433.

[34]

Chen H, Gamsjäger E, Schider S, Khanbareh H, Van Der Zwaag S. In situ observation of austenite-ferrite interface migration in a lean Mn steel during cyclic partial phase transformations. Acta Mater., 2013, 61(7): 2414.

[35]

Liu Y, Sun YH. In-situ observation of interaction between precipitates and austenite during δγ phase transformations. Mater. Sci. Technol., 2019, 35(5): 536.

[36]

Sun YH, Zeng YN, Cai KK. Hot ductility of Ti-V bearing microalloyed steel in continuous casting. J. Iron. Steel Res. Int., 2014, 21(4): 451.

[37]

Phelan D, Dippenaar R. Widmanstätten ferrite plate formation in low-carbon steels. Metall. Mater. Trans. A, 2004, 35(12): 3701.

[38]

Phelan D, Stanford N, Dippenaar R. In situ observations of Widmanstten ferrite formation in a low-carbon steel. Mater. Sci. Eng. A, 2005, 407(1–2): 127.

[39]

Jin GC, Chen SY, Li QC, Chang GW, Yue XD. Insitu observation of proeutectoid ferrite growth process in carbon steel under continuous cooling conditions. J. Iron Steel Res. Int., 2013, 20(10): 94.

[40]

Aaronson HI, Wells C. Sympathetic nucleation of ferrite. JOM, 1956, 8(10): 1216.

[41]

Spanos G, Hall MG. The formation mechanism(s), morphology, and crystallography of ferrite sideplates. Metall. Mater. Trans. A, 1996, 27(6): 1519.

[42]

Spanos G, Wilson AW, Kral MV. New insights into the widmanstätten proeutectoid ferrite transformation: Integration of crystallographic and three-dimensional morphological observations. Metall. Mater. Trans. A, 2005, 36(5): 1209.

[43]

Banks KM, Tuling A, Mintz B. Influence of V and Ti on hot ductility of Nb containing steels of peritectic C contents. Mater. Sci. Technol., 2011, 27(8): 1309.

[44]

Chen BH, Yu H. Hot ductility behavior of V-N and V-Nb microalloyed steels. Int. J. Miner. Metall. Mater., 2012, 19(6): 525.

[45]

H.R. Ezatpour, M. Torabi-Parizi, G.R. Ebrahimi, and A Momeni, Effect of micro-alloy elements on dynamic recrystallization behavior of a high-manganese steel, Steel Res. Int., 89(2018), No. 7, art. No. 1700559.

[46]

Lee SJ, Lee YK. Prediction of austenite grain growth during austenitization of low alloy steels. Mater. Des., 2008, 29(9): 1840.

[47]

Lan LY, Qiu CL, Zhao DW, Gao XH, Du LX. Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel. Mater. Sci. Eng. A, 2012, 558, 592.

[48]

Diaz-Fuentes M, Iza-Mendia A, Gutierrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior. Metall. Mater. Trans. A, 2003, 34(11): 2505.

[49]

Rodriguez-Ibabe JM. The role of microstrucure in toughness behaviour of microalloyed steels. Mater. Sci. Forum., 1998, 284–286, 51.

[50]

Zhang J, Wang FM, Yang ZB, Li CR. Microstructure, precipitation, and mechanical properties of V-N-alloyed steel after different cooling processes. Metall. Mater. Trans. A, 2016, 47(12): 6621.

[51]

Mejía I, Salas-Reyes AE, Bedolla-Jacuinde A, Calvo J, Cabrera JM. Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe-21Mn-1.3Al-1.5Si-0.5C TWIP steel. Mater. Sci. Eng. A, 2014, 616, 229.

[52]

Mejía I, Salas-Reyes AE, Calvo J, Cabrera J M. Effect of Ti and B microadditions on the hot ductility behavior of a High-Mn austenitic Fe-23Mn-1.5Al-1.3Si-0.5C TWIP steel. Mater. Sci. Eng. A, 2015, 648, 311.

[53]

Banks K, Koursaris A, Verdoorn F, Tuling A. Precipitation and hot ductility of low C-V and low C-V-Nb microalloyed steels during thin slab casting. Mater. Sci. Technol., 2001, 17(12): 1596.

[54]

S.C. Moon and R. Dippenaar, The effect of austenite grain size on hot ductility of steels, [in] MS&T 2004 Conference Proceedings, New Orleans, 2004, p. 675.

[55]

Mintz B, Lewis J, Jonas JJ. Importance of deformation induced ferrite and factors which control its formation. Mater. Sci. Technol., 1997, 13(5): 379.

[56]

Maki T, Nagamichi T, Abe N, Tamura I. Formation behavior of proeutectoid ferrite and hot ductility in (α+γ) two phase region in low carbon steels. Tetsu-to-Hagane, 1985, 71(10): 1367.

[57]

Furumai K, Wang X, Zurob H, Phillion A. Evaluating the effect of the competition between NbC precipitation and grain size evolution on the hot ductility of Nb containing steels. ISIJ Int., 2019, 59(6): 1064.

[58]

Wang ZH, Sun SH, Wang B, Shi ZP, Fu WT. Importance and role of grain size in free surface cracking prediction of heavy forgings. Mater. Sci. Eng. A, 2015, 625, 321.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/