Optimization of battery life and capacity by setting dense mesopores on the surface of nanosheets used as electrode

Yue-quan Su , Xin-yue Zhang , Li-meng Liu , Yi-ting Zhao , Fang Liu , Qing-song Huang

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (1) : 142 -149.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (1) : 142 -149. DOI: 10.1007/s12613-020-2088-y
Article

Optimization of battery life and capacity by setting dense mesopores on the surface of nanosheets used as electrode

Author information +
History +
PDF

Abstract

Nanosheets with mesopores on the surface have been prepared using molybdenum trioxide (α-MoO3). The effect of mesopores on the performance of the electrode remains elusive. The MoO3 nanosheets obtained in this study exhibited great battery performance, including good capacity, prolonged recycling life cycles, and excellent rate performance; e.g., 780 mAh/g when charged under a super high current-density of 1000 mA/g. These nanosheets demonstrated excellent stability, maintaining a capacity of 1189 mAh/g after 20 cycles, and 1075 mAh/g after 50 cycles; thus preventing the capacity to decrease to values under the scanning rate of 100 mA/g. These high-purity MoO3 nanosheets are well-ordered and have dense mesopores on the surface; these micropores contribute to the excellent electrode performance of the host electrode materials; the performance parameters include prolonged battery life and capacity. Setting mesopores or active sites on the electrode surface can be an alternative way to obtain stable electrodes in the future.

Keywords

MoO3 nanosheet / dense mesopores / battery / electrode materials / electrode performance

Cite this article

Download citation ▾
Yue-quan Su, Xin-yue Zhang, Li-meng Liu, Yi-ting Zhao, Fang Liu, Qing-song Huang. Optimization of battery life and capacity by setting dense mesopores on the surface of nanosheets used as electrode. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(1): 142-149 DOI:10.1007/s12613-020-2088-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem., 2015, 7(1): 19.

[2]

Adv. Mater., 2019, 31(24)

[3]

Yang SB, Feng XL, Ivanovici S, Müllen K. Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed., 2010, 49(45): 8408.

[4]

Han S, Wu DQ, Li S, Zhang F, Feng XL. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater., 2014, 26(6): 849.

[5]

Wang S, Wang QY, Shao PP, Han YZ, Gao X, Ma L, Yuan S, Ma XJ, Zhou JW, Feng X, Wang B. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc., 2017, 139(12): 4258.

[6]

Zhang HJ, Gao LJ, Gong YJ. Exfoliated MoO3 nanosheets for high-capacity lithium storage. Electrochem. Commun., 2015, 52, 67.

[7]

Wang B, Li XL, Qiu TF, Luo B, Ning J, Li J, Zhang XF, Liang MH, Zhi LJ. High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. Nano. Lett., 2013, 13(11): 5578.

[8]

Li HN, Shi YM, Chiu MH, Li LJ. Emerging energy applications of two-dimensional layered transition metal dichalcogenides. Nano Energy, 2015, 18, 293.

[9]

Cui XJ, Xiao JP, Wu YH, Du PP, Si R, Yang HX, Tian HF, Li JQ, Zhang WH, Deng DH, Bao XH. A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed., 2016, 55(23): 6708.

[10]

Adv. Energy Mater., 2016, 6(5)

[11]

Li L, Zhou GM, Yin LC, Koratkar N, Li F, Cheng HM. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li-S batteries. Carbon, 2016, 108, 120.

[12]

Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 2013, 5(4): 263.

[13]

Adv. Energy Mater., 2018, 8(10)

[14]

Su DW, Dou SX, Wang GX. Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv. Energy Mater., 2015, 5(6): 1.

[15]

J.K. Miao, D.P. Cai, J.H. Si, Q.T. Wang, and H.B. Zhan, Multicomponent hierarchical hollow Co-Mo-O nanocages anchored on reduced graphene oxide with strong interfacial interaction for lithium-ion batteries, J. Alloys Compd., 828(2020), art. No. 154379.

[16]

Xia H, Zhu XH, Liu JZ, Liu Q, Lan S, Zhang QH, Liu XY, Seo JK, Chen TT, Gu L, Meng YS. A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nat. Commun., 2018, 9(1): 1.

[17]

Xue L, Zhang QH, Zhu XH, Gu L, Yue JL, Xia QY, Xing T, Chen TT, Yao Y, Xia H. 3D LiCoO2 nanosheets assembled nanorod arrays via confined dissolution-recrystallization for advanced aqueous lithium-ion batteries. Nano Energy, 2019, 56, 463.

[18]

Adv. Energy Mater., 2019, 9(7)

[19]

Tojo T, Tawa H, Oshida N, Inada R, Sakurai Y. Electrochemical characterization of a layered α-MoO3 as a new cathode material for calcium ion batteries. J. Electroanal. Chem., 2018, 825, 51.

[20]

Zhuang RY, Yao SS, Shen XQ, Li TB. Hydrothermal synthesis of mesoporous MoO2 nanospheres as sulfur matrix for lithium sulfur battery. J. Electroanal. Chem., 2019, 833, 441.

[21]

Wu K, Zhan J, Xu G, Zhang C, Pan DY, Wu MH. MoO3 nanosheet arrays as superior anode materials for Li- and Na-ion batteries. Nanoscale, 2018, 10(34): 16040.

[22]

Li Z, Zhang JT, Lou XW. Hollow carbon nanofibers filled with mno2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed., 2015, 54(44): 12886.

[23]

Sun YF, Gao S, Lei FC, Xie Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev., 2015, 44(3): 623.

[24]

Su LH, Wang Y, Sha YF, Hao MW. Ternary active site Co3O4/NiO/MnO2 electrode with enhanced capacitive performances. J. Alloys Compd., 2016, 656, 585.

[25]

Li XF, Geng DS, Zhang Y, Meng XB, Li RY, Sun XL. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem. Commun., 2011, 13(8): 822.

[26]

Adv. Energy Mater., 2018, 8(10)

[27]

Dabrowski T, Struck A, Fenske D, Maas P, Ciacchi LC. Optimization of catalytically active sites positioning in porous cathodes of lithium/air batteries filled with different electrolytes. J. Electrochem. Soc., 2015, 162(14): A2796.

[28]

Wang ZY, Madhavi S, Lou XW. Ultralong α-MoO3 nanobelts: Synthesis and effect of binder choice on their lithium storage properties. J. Phys. Chem. C, 2012, 116(23): 12508.

[29]

Riley LA, Lee SH, Gedvilias L, Dillon AC. Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries. J. Power Sources, 2010, 195(2): 588.

[30]

Reddy CVS, Deng ZR, Zhu QY, Dai Y, Zhou J, Chen W, Mho SI. Characterization of MoO3 nanobelt cathode for Li-battery applications. Appl. Phys. A, 2007, 89(4): 995.

[31]

Meduri P, Clark E, Kim JH, Dayalan E, Sumanasekera GU, Sunkara MK. MoO3−x nanowire arrays as stable and high-capacity anodes for lithium ion batteries. Nano. Lett., 2012, 12(4): 1784.

[32]

Xia Q, Zhao HL, Du ZH, Zeng ZP, Gao CH, Zhang ZJ, Du XF, Kulka A, Świerczek K. Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries. Electrochim. Acta, 2015, 180, 947.

[33]

Gong YJ, Yang SB, Liu Z, Ma LL, Vajtai R, Ajayan PM. Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater., 2013, 25(29): 3979.

[34]

Sen UK, Shaligram A, Mitra S. Intercalation anode material for lithium ion battery based on molybdenum dioxide. ACS Appl. Mater. Interfaces, 2014, 6(16): 14311.

[35]

Yan JF, Zhang SY, Wang G, Wang H, Zhang ZY, Ruan XF, Zheng HY. Preparation assisted via thermal stress and electrochemical performance of graphene nano-sheets as anode materials for lithium-ion batteries. Integr. Ferroelectr., 2015, 160(1): 2.

[36]

Nanotechnology, 2008, 19(49)

[37]

Zhao XJ, Jia W, Wu XY, Lv Y, Qiu JS, Guo JX, Wang XC, Jia DZ, Yan JF, Wu DL. Ultrafine MoO3 anchored in coal-based carbon nanofiber as anode for advanced lithium-ion batteries. Carbon, 2020, 156, 445.

[38]

Mai LQ, Hu B, Chen W, Qi YY, Lao CS, Yang RS, Dai Y, Wang ZL. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater., 2007, 19(21): 3712.

[39]

Ahmed B, Shahid M, Nagaraju DH, Anjum DH, Hedhili MN, Alshareef HN. Surface passivation of moo3 nanorods by atomic layer deposition toward high rate durable li ion battery anodes. ACS Appl. Mater. Interfaces, 2015, 7(24): 13154.

[40]

Ni JF, Wang GB, Yang J, Gao DL, Chen JT, Gao LJ, Li Y. Carbon nanotube-wired and oxygen-deficient MoO3 nanobelts with enhanced lithium-storage capability. J. Power Sources, 2014, 247, 90.

[41]

Peng HJ, Huang JQ, Zhao MQ, Zhang Q, Cheng XB, Liu XY, Qian WZ, Wei F. Nanoarchitectured graphene/CNT@ porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv. Funct. Mater., 2014, 24(19): 2772.

[42]

Zhuang W, Li L, Zhu JH, An R, Lu LH, Lu X, Wu XB, Ying HJ. Facile synthesis of mesoporous MoS2-TiO2 nanofibers for ultrastable lithium ion battery anodes. ChemElectro-Chem, 2015, 2(3): 374.

[43]

Liu H, Su DW, Zhou RF, Sun B, Wang GX, Qiao SZ. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater., 2012, 2(8): 970.

[44]

Shi YF, Wan Y, Liu RL, Tu B, Zhao DY. Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route. J. Am. Chem. Soc., 2007, 129(30): 9522.

[45]

Nadimicherla R, Zha RH, Wei L, Guo X. Single crystalline flowerlike α-MoO3 nanorods and their application as anode material for lithium-ion batteries. J. Alloys Compd., 2016, 687, 79.

[46]

Sreedhara MB, Santhosha AL, Bhattacharyya AJ, Rao CNR. Composite of few-layer MoO3 nanosheets with graphene as a high performance anode for sodium-ion batteries. J. Mater. Chem. A, 2016, 4(24): 9466.

[47]

Yao WQ, Wu SB, Zhan L, Wang YL. Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries. Chem. Eng. J., 2019, 361, 329.

[48]

M.Y. Wang, Y. Huang, Y.D. Zhu, N. Zhang, J.X. Zhang, X.L. Qin, and H.M. Zhang, Synthesis of porous ZnxCo3−xO4 hollow nanoboxes derived from metal-organic frameworks for lithium and sodium storage, Electrochim. Acta, 335(2020), art. No. 135694.

[49]

Wang MY, Huang Y, Zhang N, Zhu YD, Zhang HM, Kim JK. Fabrication of Ti3+ doped TiO2 coated Mn3O4 nanorods with voids and channels for lithium storage. Chem. Eng. J., 2019, 370, 1425.

[50]

Moyer K, Carter R, Hanken T, Douglas A, Oakes L, Pint CL. Electrophoretic deposition of LiFePO4 onto 3-D current collectors for high areal loading battery cathodes. Mater. Sci. Eng. B, 2019, 241, 42.

[51]

Tang H, Zhang J, Zhang YJ, Xiong QQ, Tong YY, Li Y, Wang XL, Gu CD, Tu JP. Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application. J. Power Sources, 2015, 286, 431.

[52]

Sun YX, Wang J, Zhao BT, Cai R, Ran R, Shao ZP. Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector. J. Mater. Chem. A, 2013, 1(15): 4736.

[53]

Yuan ZQ, Si LL, Wei DH, Hu L, Zhu YC, Li XN, Qian YT. Vacuum topotactic conversion route to mesoporous orthorhombic moo3 nanowire bundles with enhanced electrochemical performance. J. Phys. Chem. C, 2014, 118(10): 5091.

[54]

Dewangan K, Sinha NN, Sharma PK, Pandey AC, Munichandraiah N, Gajbhiye NS. Synthesis and characterization of single-crystalline α-MoO3 nanofibers for enhanced Liion intercalation applications. CrystEngComm, 2011, 13(3): 927.

[55]

Lee SH, Kim YH, Deshpande R, Parilla PA, Whitney E, Gillaspie DT, Jones KM, Mahan AH, Zhang SB, Dillon AC. Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv. Mater., 2008, 20(19): 3627.

[56]

Liu CL, Wang Y, Zhang C, Li XS, Dong WS. In situ synthesis of α-MoO3/graphene composites as anode materials for lithium ion battery. Mater. Chem. Phys., 2014, 143(3): 1111.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/