Erosion-corrosion and its mitigation on the internal surface of the expansion segment of N80 steel tube
Tan Shang , Xian-kang Zhong , Chen-feng Zhang , Jun-ying Hu , Bálint Medgyes
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (1) : 98 -110.
Erosion-corrosion and its mitigation on the internal surface of the expansion segment of N80 steel tube
We investigated erosion-corrosion (E-C) and its mitigation on the internal surface of the expansion segment of N80 steel tube in a loop system using array electrode technique, weight-loss measurement, computational-fluid-dynamics simulation, and surface characterization techniques. The results show that high E-C rates can occur at locations where there is a high flow velocity and/or a strong impact from sand particles, which results in different E-C rates at various locations. Consequently, it can be expected that localized corrosion often occurs in such segments. The E-C rate at each location in the expansion segment can be significantly mitigated with an imidazoline derivative inhibitor, as the resulting inhibitor layer significantly impedes the electrochemical reaction rate. However, we found that this inhibitor layer could not effectively reduce the difference in the erosion rates at different locations on the internal surface of the expansion segment. This means that localized corrosion can still occur at the expansion segment despite the presence of the inhibitor.
erosion-corrosion / expansion segment / array electrode technique / inhibitor / localized corrosion
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
X.K. Zhong, T. Shang, C.F. Zhang, J.Y. Hu, Z. Zhang, Q. Zhang, X. Yuan, D. Hou, D.Z. Zeng, and T.H. Shi, In situ study of flow accelerated corrosion and its mitigation at different locations of a gradual contraction of N80 steel, J. Alloys Compd., 824(2020), art. No. 153947. |
| [30] |
|
| [31] |
|
| [32] |
J.K. Edwards, B.S. Mclaury, and S.A. Shirazi, Evaluation of alternative pipe bend fitting in erosive service, [in] Proceedings of ASME FEDSM’ 00: Fluids Engineering Division Summer Meeting, Boston, 2000. |
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
T.M. Redlinger, P.S. Griggs, and S. Bergo, Comprehensive review of damages and repairs on drill pipe connections, [in] IADC/SPE Drilling Conference and Exhibition, San Diego, California, 2012, art. No. SPE-151253-MS. |
| [40] |
|
| [41] |
Chem. Phys. Lett., 2019, 735(16) art. No. 136773 |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
/
| 〈 |
|
〉 |