Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys
Min Zhang , Jin-xiong Hou , Hui-jun Yang , Ya-qin Tan , Xue-jiao Wang , Xiao-hui Shi , Rui-peng Guo , Jun-wei Qiao
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1341 -1346.
Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys
The evolution of the microstructure and tensile properties of dual-phase Al0.6CoCrFeNi high-entropy alloys (HEAs) subjected to cold rolling was investigated. The homogenized Al0.6CoCrFeNi alloys consisted of face-centered-cubic and body-centered-cubic phases, presenting similar mechanical behavior as the as-cast state. The yield and tensile strengths of the alloys could be dramatically enhanced to ∼1205 MPa and ∼1318 MPa after 50% rolling reduction, respectively. A power-law relationship was discovered between the strain-hardening exponent and rolling reduction. The tensile strengths of this dual-phase HEA with different cold rolling treatments were predicted, mainly based on the Hollomon relationship, by the strain-hardening exponent, and showed good agreement with the experimental results.
dual-phase high-entropy alloys / cold rolling / strain-hardening exponent / tensile strength
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, and Z.P. Lu, Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., 29(2017), No. 30, art. No. 1701678. |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
Z.M. Li, C.C. Tasan, H. Springer, B. Gault, and D. Raabe, Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys, Sci. Rep., 7(2017), art. No. 40704. |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
B.B. Bian, N. Guo, H.J. Yang, R.P. Guo, L. Yang, Y.C. Wu, and J.W. Qiao, A novel cobalt-free FeMnCrNi medium-entropy alloy with exceptional yield strength and ductility at cryogenic temperature, J. Alloys Compd., 827(2020), art. No. 153981. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
J.X. Hou, X.H. Shi, J.W. Qiao, Y. Zhang, P.K. Liaw, and Y.C. Wu, Ultrafine-grained dual phase Al0.45CoCrFeNi high-entropy alloys, Mater. Des., 180(2019), art. No. 107910. |
| [21] |
P.J. Shi, W.L. Ren, T.X. Zheng, Z.M. Ren, X.L. Hou, J.C. Peng, P.F. Hu, Y.F. Gao, Y.B. Zhong, and P.K. Liaw, Enhanced strength—ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun., 10(2019), art. No. 489. |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
M. Yang, The application of stress strain curve and strain-hardening exponent in plastic working, Mod. Mach., 2013, No. 4, p. 20. |
| [32] |
|
| [33] |
|
/
| 〈 |
|
〉 |