Electrochemistry of Hf(IV) in NaCl–KCl–NaF–K2HfF6 molten salts

Yan-ke Wu , Guo-qing Yan , Song Chen , Li-jun Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (12) : 1644 -1649.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (12) : 1644 -1649. DOI: 10.1007/s12613-020-2083-3
Article

Electrochemistry of Hf(IV) in NaCl–KCl–NaF–K2HfF6 molten salts

Author information +
History +
PDF

Abstract

The cathodic reduction mechanism of Hf(IV) ions in a fused NaCl–KCl–NaF–K2HfF6 salt system was studied in various NaF concentrations at 1073 K to obtain a purified dendritic Hf metal. The results of cyclic voltammetry and square wave voltammetry indicated that the reduction process comprised two steps of Hf(IV) → Hf(II) and Hf(II) → Hf at low NaF concentrations (0 < molar ratio of [FHf4+] ≤ 17.39) and one step of Hf(IV) → Hf at high NaF concentrations (17.39 < molar ratio of [F/Hf4+] < 23.27). The structure and morphology of the deposits obtained in potentiostatic electrolysis in the one-step reduction process were analyzed and verified by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectrometry. In the one-step reduction process, the disproportionation reaction between the Hf metal and Hf complex ions was inhibited, and a large dendrite Hf metal was achieved in molten salt electrorefining.

Keywords

electrochemical behavior / cyclic voltammetry / potentiostatic electrolysis / dendritic hafnium / molten salts

Cite this article

Download citation ▾
Yan-ke Wu, Guo-qing Yan, Song Chen, Li-jun Wang. Electrochemistry of Hf(IV) in NaCl–KCl–NaF–K2HfF6 molten salts. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(12): 1644-1649 DOI:10.1007/s12613-020-2083-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iwasakl T, Konashi K. Development of hydride absorber for fast reactor-application of hafnium hydride to control rod of large fast reactor. J. Nucl. Sci. Technol., 2009, 46(8): 874.

[2]

Tricot T R. The metallurgy and functional properties of hafnium. J. Nucl. Mater., 1992, 189(3): 277.

[3]

Zukic M, Torr DG, Spann JF, Torr MR. Vacuum ultraviolet thin films. I —Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films. Appl. Opt., 1990, 29(28): 4284.

[4]

Srivastava A, Nahar RK, Sarkar CK. Study of the effect of thermal annealing on high k hafnium oxide thin film structure and electrical properties of MOS and MIM devices. J. Mater. Sci.-Mater. Electron., 2011, 22(7): 882.

[5]

Choi JH, Mao Y, Chang JP. Development of hafnium based high-k materials—A review. Mater. Sci. Eng. R, 2011, 72(6): 97.

[6]

Chen GS, Masazumi O, Takeo O. Electrochemical studies of zirconium of zirconium and hafnium in alkali chloride and alkali fluoride-chloride molten salts. J. Appl. Electrochem., 1990, 20(1): 77.

[7]

Poinso JY, Bouvet S, Ozil P, Poignet JC, Bouteillon J. Electrochemical reduction of hafnium tetrachloride in molten NaCl–KCl. J. Electrochem. Soc., 1993, 140(5): 1315.

[8]

Liu X, Wu YK, Chen S, Song B, Wang LJ. Electrochemical reduction behavior of Hf(IV) in molten NaCl–KCl–K2HfCl6 system. Rare Met., 2016, 35(8): 655.

[9]

Wu YK, Xu ZG, Chen S, Wang LJ, Li GX. Electrochemical behavior of zirconium in molten NaCl–KCl–K2ZrF6 system. Rare Met., 2011, 30(1): 8.

[10]

Novoselova A, Smolenski V. Electrochemical behavior of neodymium compounds in molten chlorides. Elcctochhim. Acta., 2013, 87, 657.

[11]

Prabhakara RB, Vandarkuzhali S, Subramanian T, Venkatesh P. Electrochemical studies on the redox mechanism of uranium chloride in molten LiCl–KCl eutectic. Electrochim Acta., 2004, 49(15): 2471.

[12]

Cassayre L, Serp J, Soucek P, Malmbeck R, Rebizant J, Glatz JP. Electrochemistry of thorium in LiCl–KCl eutectic melts. Electrochim, Acta, 2007, 52(26): 7432.

[13]

Polyakova LP, Taxil P, Polyakov EG. Electrochemical behavior and codeposition of titanium and niobium in chloridefluoride melts. J. Alloys Compd., 2003, 359(1–2): 244.

[14]

Nicholson RS, Shain I. Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem., 1964, 36(4): 706.

[15]

Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications, 2001, 2nd ed., New York, John Wiley & Sons, Inc.

[16]

Hamel C, Chamelot P, Taxil P. Neodymium(III) cathodic process in molten fluoride. Electrochim. Acta, 2004, 49(25): 4467.

[17]

Stalick JK, Waterstrat RM. The hafnium-platinum phase diagram. J. Phase Equilib. Diffus., 2014, 35(1): 15.

AI Summary AI Mindmap
PDF

326

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/