Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents

Diana Cholico-González , Noemí Ortiz Lara , Mario Alberto Sánchez Miranda , Ricardo Morales Estrella , Ramiro Escudero García , Carlos A. León Patiño

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 603 -611.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 603 -611. DOI: 10.1007/s12613-020-2079-z
Article

Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents

Author information +
History +
PDF

Abstract

The reduction behavior and metallization degree of magnetite concentrate with agave bagasse were investigated in an inert atmosphere. The effects of temperature, biomass content, and residence time on reduction experiments and metallization degree were investigated by X-ray diffraction and scanning electron microscopy. Compared with other types of biomass, agave bagasse had lower contents of nitrogen, sulfur, and ash. X-ray diffraction analysis showed that the metallization degree improved with increasing temperature and biomass content. Complete metallization was achieved at 1100°C for 30 min with 65:35 and 50:50 ratios of the magnetite concentrate to the agave bagasse. These results demonstrate that agave bagasse promotes the efficient metallization of magnetite concentrate without the external addition of a reducing agent. Therefore, this biomass is a technical suitable alternative to replace fossil fuels in steelmaking.

Keywords

magnetite concentrate / agave bagasse / biomass / reduction / metallization degree

Cite this article

Download citation ▾
Diana Cholico-González, Noemí Ortiz Lara, Mario Alberto Sánchez Miranda, Ricardo Morales Estrella, Ramiro Escudero García, Carlos A. León Patiño. Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(4): 603-611 DOI:10.1007/s12613-020-2079-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo DB, Zhu LD, Guo S, Cui BH, Luo SP, Laghari M, Chen ZH, Ma CF, Zhou Y, Chen J, Xiao B, Hu M, Luo SY. Direct reduction of oxidized iron ore pellets using biomass syngas as the reducer. Fuel Process. Technol., 2016, 148, 276.

[2]

de Alencar JPSG, de Resende VG, de Castro LFA. Effect of temperature on morphology of metallic iron and formation of clusters of iron ore pellets. Metall. Mater. Trans. B., 2016, 47(1): 85.

[3]

Mousa E, Wang C, Riesbeck J, Larsson M. Biomass applications in iron and steel industry: An overview of challenges and opportunities. Renewable Sustainable Energy Rev., 2016, 65, 1247.

[4]

Wei RF, Zhang LL, Cang DQ, Li JX, Li XW, Xu CC. Current status and potential of biomass utilization in ferrous metallurgical industry. Renewable Sustainable Energy Rev., 2017, 68, 511.

[5]

Konishi H, Ichikawa K, Usui T. Effect of residual volatile matter on reduction of iron oxide in semi-charcoal composite pellets. ISIJ Int., 2010, 50(3): 386.

[6]

Srivastava U, Kawatra SK, Eisele TC. Production of pig iron by utilizing biomass as a reducing agent. Int. J. Miner. Process., 2013, 119, 51.

[7]

Gan M, Fan XH, Chen XL, Ji ZY, Lv W, Wang Y, Yu ZY, Jiang T. Reduction of pollutant emission in iron ore sintering process by applying biomass fuels. ISIJ Int., 2012, 52(9): 1574.

[8]

Kawaguchi T, Hara M. Utilization of biomass for iron ore sintering. ISIJ Int., 2013, 53(9): 1599.

[9]

Street SJ, Brooks GA, Worner HK. Recent developments in the environment process. Can. Metall. Q., 1997, 36(5): 333.

[10]

Ueki Y, Yoshiie R, Naruse I, Ohno KI, Maeda T, Nishioka K, Shimizu M. Reaction behavior during heating biomass materials and iron oxide composites. Fuel, 2013, 104, 58.

[11]

Strezov V. Iron ore reduction using sawdust: Experimental analysis and kinetic modelling. Renewable Energy, 2006, 31(12): 1892.

[12]

Abd Rashid RZ, Mohd. Salleh H, Ani MH, Yunus NA, Akiyama T, Purwanto H. Reduction of low grade iron ore pellet using palm kernel shell. Renewable Energy, 2014, 63, 617.

[13]

Yuan P, Shen BX, Duan DP, Adwek G, Mei X, Lu FJ. Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process. Energy, 2017, 141, 472.

[14]

Zandi M, Martinez-Pacheco M, Fray TAT. Biomass for iron ore sintering. Miner. Eng., 2010, 23(14): 1139.

[15]

Yunus NA, Ani MH, Mohd. Salleh H, Abd Rashid RZ, Akiyama T, Purwanto H. Reduction of iron ore/empty fruit bunch char briquette composite. ISIJ Int., 2013, 53(10): 1749.

[16]

Cedeño MC. Tequila Production. Crit. Rev. Biotechnol., 1995, 15(1): 1.

[17]

Montoya-Rosales J de J, Olmos-Hernández DK, Palomo-Briones R, Montiel-Corona V, Mari AG, Razo-Flores E. Improvement of continuous hydrogen production using individual and binary enzymatic hydrolysates of agave bagasse in suspended-culture and biofilm reactors. Bioresour. Technol., 2019, 283, 251.

[18]

Iniguez-Covarrubias G, Lange SE, Rowell RM. Utilization of byproducts from the tequila industry: Part 1: Agave bagasse as a raw material for animal feeding and fiberboard production. Bioresour. Technol., 2001, 77(1): 25.

[19]

Iniguez-Covarrubias G, Díaz-Teres R, Sanjuan-Dueñas R, Anzaldo-Hernández J, Rowell RM. Utilization of byproducts from the tequila industry. Part 2: Potential value of Agave tequilana Weber azul leaves. Bioresour. Technol., 2001, 77(2): 101.

[20]

ASTM International, ASTM D 2016-74. Standard Test Method for Moisture in Wood, 2003, West Conshohocken, ASTM International

[21]

ASTM International, ASTM D 1102-84. Standard Test Method for Ash in Wood, 2001, West Conshohocken, ASTM International

[22]

ASTM International, ASTM D 1762-84. Standard Test Method for Chemical Analysis of Wood Charcoal, 2001, West Conshohocken, ASTM International

[23]

ASTM International, ASTM D 3172-89. Standard Practice for Proximate Analysis of Coal and Coke, 2002, West Conshohocken, ASTM International

[24]

Parascanu MM, Sandoval-Salas F, Soreanu G, Valverde JL, Sanchez-Silva L. Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes. Renewable Sustainable Energy Rev., 2017, 71, 509.

[25]

Obernberger I, Brunner T, Bärnthaler G. Chemical properties of solid biofuels—significance and impact. Biomass and Bioenergy, 2006, 30(11): 973.

[26]

Lu LM, Adam M, Kilburn M, Hapugoda S, Somerville M, Jahanshahi S, Mathieson JG. Substitution of charcoal for coke breeze in iron ore sintering. ISIJ Int., 2013, 53(9): 1607.

[27]

Akhtar K, Tahmasebi A, Tian L, Yu JL, Lucas J. An experimental study of direct reduction of hematite by lignite char. J. Therm. Anal. Calorim., 2016, 123(2): 1111.

[28]

Tronc E, Hernández-Escobar CA, Ibarra-Gómez R, Estrada-Monje A, Navarrete-Bolaños J, Zaragoza-Contreras EA. Blue agave fiber esterification for the reinforcement of thermoplastic composites. Carbohydr. Polym., 2007, 67(2): 245.

[29]

Liñán-Montes A, de la Parra-Arciniega SM, Garza-González MT, García-Reyes RB, Soto-Regalado E, Cerino-Córdova FJ. Characterization and thermal analysis of agave bagasse and malt spent grain. J. Therm. Anal. Calorim., 2014, 115(1): 751.

[30]

Perez-Pimienta JA, Lopez-Ortega MG, Chavez-Carvayar JA, Varanasi P, Stavila V, Cheng G, Singh S, Simmons BA. Characterization of agave bagasse as a function of ionic liquid pretreatment. Biomass Bioenergy, 2015, 75, 180.

[31]

Filho GR, da Cruz SF, Pasquini D, Cerqueira DA, de Souza Prado V, de Assunção RMN. Water flux through cellulose triacetate films produced from heterogeneous acetylation of sugar cane bagasse. J. Membr. Sci., 2000, 177(1–2): 225.

[32]

Vieira JG, Rodrigues Filho G, Meireles C da S, Faria FAC, Gomide DD, Pasquini D, da Cruz SF, de Assunção RMN, Motta LA de C. Synthesis and characterization of methyl-cellulose from cellulose extracted from mango seeds for use as a mortar additive. Polimeros, 2012, 22(1): 80.

[33]

Kestur S G, Flores-Sahagun THS, Dos Santos LP, Dos Santos J, Mazzaro I, Mikowski A. Characterization of blue agave bagasse fibers of Mexico. Composites Part A, 2013, 45, 153.

[34]

Saucedo-Luna J, Castro-Montoya AJ, Martinez-Pacheco MM, Sosa-Aguirre CR, Campos-Garcia J. Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. J. Ind. Microbiol. Biotechnol., 2011, 38(6): 725.

[35]

Yang HP, Yan R, Chen HP, Zheng CG, Lee DH, Liang DT. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy Fuels, 2006, 20(1): 388.

[36]

Yang HP, Yan R, Chen HP, Lee DH, Zheng CG. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 2007, 86(12–13): 1781.

[37]

Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable Sustainable Energy Rev., 2016, 57, 1126.

[38]

Mishra RK, Mohanty K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour. Technol., 2018, 251, 63.

[39]

Demirbaş A. Calculation of higher heating values of biomass fuels. Fuel, 1997, 76(5): 431.

[40]

Chavez-Guerrero L, Hinojosa M. Bagasse from the mezcal industry as an alternative renewable energy produced in arid lands. Fuel, 2010, 89(12): 4049.

[41]

Luo SY, Yi CJ, Zhou YM. Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas. Renewable Energy, 2011, 36(12): 3332.

[42]

Purwanto H, Shimada T, Takahashi R, Yagi J. Reduction rate of cement bonded laterite briquette with CO–CO2 gas. ISIJ Int., 2001, 41, S31.

[43]

Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2: Part I: Low temperature reduction of hematite. Thermochim. Acta, 2006, 447(1): 89.

[44]

Man Y, Feng JX, Li FJ, Ge Q, Chen YM, Zhou JZ. Influence of temperature and time on reduction behavior in iron ore-coal composite pellets. Powder Technol., 2014, 256, 361.

[45]

Zeng JM, Xiao R, Zhang HY, Wang YH, Zeng DW, Ma Z. Chemical looping pyrolysis-gasification of biomass for high H2/CO syngas production. Fuel Process. Technol., 2017, 168, 116.

[46]

Ubando AT, Chen WH, Ong HC. Iron oxide reduction by graphite and torrefied biomass analyzed by TG-FTIR for mitigating CO2 emissions. Energy, 2019, 180, 968.

[47]

Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Spencer P, Van Ende MA. FactSage thermochemical software and databases. Calphad, 2002, 26(2): 189.

[48]

C.K. Gupta, Chemical Metallurgy: Principles and Practice, Wiley-VCH Verlag GmbH & Co. KGaA, 2004.

[49]

F. Habashi, Principles of Extractive Metallurgy, CRC Press, 1986.

[50]

Narçin N, Aydln S, Şeşen K, Dikeç F. Redaction of iron ore pellets with domestic lignite coal in a rotary tube furnace. Int. J. Miner. Process., 1995, 43(1–2): 49.

[51]

Merk R, Pickles CA. Reduction of ilmenite by carbon monoxide. Can. Metall. Q., 1988, 27(3): 179.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/