Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review

Hong-liang Li , Wen-nan Xu , Fei-fei Jia , Jian-bo Li , Shao-xian Song , Yuri Nahmad

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (7) : 857 -871.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (7) : 857 -871. DOI: 10.1007/s12613-020-2078-0
Invited Review

Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review

Author information +
History +
PDF

Abstract

Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions. These properties usually coexist and interact with each other. The correlation between the surface charge and hydration of minerals is summarized on the basis of innovative experimental, theoretical, and molecular dynamics simulation studies. The factors affecting the adsorption behavior of ions and water molecules, such as ion concentration, ion hydration radius and valence, and surface properties, are discussed. For example, the hydration and adsorption states completely differ between monovalent and divalent ions. For ions of the same valence, the effect of surface charge on the hydration force follows the Hofmeister adsorption series. Electrolyte concentration exerts a significant effect on the hydration force at high ion concentrations. Meanwhile, the ion correlations in high-concentration electrolyte systems become long range. The interfacial water structure largely depends on surface chemistry. The hydration layer between different surfaces shows large qualitative differences.

Keywords

surface hydration / surface charged ion / mineral / water molecule

Cite this article

Download citation ▾
Hong-liang Li, Wen-nan Xu, Fei-fei Jia, Jian-bo Li, Shao-xian Song, Yuri Nahmad. Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(7): 857-871 DOI:10.1007/s12613-020-2078-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benítez EI, Genovese DB, Lozano JE. Effect of pH and ionic strength on apple juice turbidity: Application of the extended DLVO theory. Food Hydrocolloids, 2007, 21(1): 100.

[2]

Liu CF, Min FF, Liu LY, Chen J. Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A molecular dynamics study. Chem. Phys. Lett., 2019, 727, 31.

[3]

Min FF, Peng CI, Song SX. Hydration layers on clay mineral surfaces in aqueous solutions: A review. Arch. Min. Sci., 2014, 59(2): 489.

[4]

Pashley RM. DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties. J. Colloid Interface Sci., 1981, 83(2): 531.

[5]

Parks GA. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev., 1965, 65(2): 177.

[6]

Pashley RM. Hydration forces between mica surfaces in electrolyte solutions. Adv. Colloid Interface Sci, 1982, 16(1): 57.

[7]

Pashley RM, Israelachvili JN. DLVO and hydration forces between mica surfaces in Mg2+, Ca2+, Sr2+, and Ba2+ chloride solutions. J. Colloid Interface Sci, 1984, 97(2): 446.

[8]

Chapel JP. Electrolyte species dependent hydration forces between silica surfaces. Langmuir, 1994, 10(11): 4237.

[9]

Chandra A. Dynamics of electrical double layer formation at a charged solid surface. J. Mol. Struct., 1998, 430, 105.

[10]

Collins KD, Washabaugh MW. The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys, 1985, 18(4): 323.

[11]

M.M. Hatlo, R. van Roij, and L. Lue, The electric double layer at high surface potentials: The influence of excess ion polarizability, Europhys. Lett., 97(2012), No. 2, art. No. 28010.

[12]

M.E. Fleharty, F. Van Swol, and D.N. Petsev, Solvent role in the formation of electric double layers with surface charge regulation: A bystander or a key participant?, Phys. Rev. Lett., 116(2016), No. 4, art. No. 048301.

[13]

Dewan S, Yeganeh MS, Borguet E. Experimental correlation between interfacial water structure and mineral reactivity. J. Phys. Chem. Lett., 2013, 4(11): 1977.

[14]

Holovko M, Druchok M, Bryk T. A molecular dynamics study of the hydrated-hydrolyzed structure of multivalent cations based on the model of primitive cation. J. Mol. Liq, 2007, 131–132, 65.

[15]

Hu QY, Weber C, Cheng HW, Renner FU, Valtiner M. Anion layering and steric hydration repulsion on positively charged surfaces in aqueous electrolytes. ChemPhysChem, 2017, 18(21): 3056.

[16]

Scheu R, Rankin BM, Chen YX, Jena KC, Ben-Amotz D, Roke S. Charge asymmetry at aqueous hydrophobic interfaces and hydration shells. Angew. Chem. Int. Ed, 2014, 53(36): 9560.

[17]

Peng CL, Min FF, Liu LY, Chen J. The adsorption of CaOH+ on (001) basal and (010) edge surface of Na-montmorillonite: A DFT study. Surf. Interface Anal., 2017, 49(4): 267.

[18]

Liu CF, Min FF, Liu LY, Chen J. Density functional theory study of water molecule adsorption on the α-quartz (001) surface with and without the presence of Na+, Mg2+, and Ca2+. ACS Omega, 2019, 4(7): 12711.

[19]

Van Oss CJ, Good RJ, Chaudhury MK. The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J. Colloid Interface Sci., 1986, 111(2): 378.

[20]

Du Q, Freysz E, Shen YR. Vibrational spectra of water molecules at quartz/water interfaces. Phys. Rev. Lett., 1994, 72(2): 238.

[21]

Song SX, Peng CS, Gonzalez-Olivares MA, Lopez-Valdivieso A, Fort T. Study on hydration layers near nanoscale silica dispersed in aqueous solutions through viscosity measurement. J. Colloid Interface Sci., 2005, 287(1): 114.

[22]

Chatterjee A, Iwasaki T, Ebina T, Miyamoto A. A DFT study on clay-cation-water interaction in montmorillonite and beidellite. Comput. Mater. Sci., 1999, 14(1–4): 119.

[23]

Peng CL, Min FF, Liu LY, Chen J. A periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surface. Appl. Surf. Sci, 2016, 387, 308.

[24]

Yi H, Jia FF, Zhao YL, Wang W, Song SX, Li HQ, Liu C. Surface wettability of montmorillonite (001) surface as affected by surface charge and exchangeable cations: A molecular dynamic study. Appl. Surf. Sci., 2018, 459, 148.

[25]

Li HL, Song SX, Zhao YL, Nahmad Y, Chen TX. Comparison study on the effect of interlayer hydration and solvation on montmorillonite delamination. JOM, 2017, 69(2): 254.

[26]

Parsons DF, Ninham BW. Surface charge reversal and hydration forces explained by ionic dispersion forces and surface hydration. Colloids Surf. A, 2011, 383(1–3): 2.

[27]

Kilpatrick JI, Loh SH, Jarvis SP. Directly probing the effects of ions on hydration forces at interfaces. J. Am. Chem. Soc., 2013, 135(7): 2628.

[28]

Min FF, Peng CL, Liu LY. Investigation on hydration layers of fine clay mineral particles in different electrolyte aqueous solutions. Powder Technol., 2015, 283, 368.

[29]

C.Y. Park, P.A. Fenter, K.L. Nagy, and N.C. Sturchio, Hydration and distribution of ions at the mica-water interface, Phys. Rev. Lett., 97(2006), No. 1, art. No. 016101.

[30]

Morag J, Dishon M, Sivan U. The governing role of surface hydration in ion specific adsorption to silica: An AFM-based account of the Hofmeister universality and its reversal. Langmuir, 2013, 29(21): 6317.

[31]

Li YZ, Zhang C, Jiang YP, Wang TJ, Wang HF. Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization. Desalination, 2016, 399, 171.

[32]

Parsons DF, Salis A. Hofmeister effects at low salt concentration due to surface charge transfer. Curr. Opin. Colloid Interface Sci., 2016, 23, 41.

[33]

Veeramasuneni S, Hu YH, Yalamanchili MR, Miller JD. Interaction forces at high ionic strengths: The role of polar interfacial interactions. J. Colloid Interface Sci., 1997, 188(2): 473.

[34]

Butt HJ. Electrostatic interaction in atomic force microscopy. Biophys. J., 1991, 60(4): 777.

[35]

Grabbe A, Horn RG. Double-layer and hydration forces measured between silica sheets subjected to various surface treatments. J. Colloid Interface Sci., 1993, 157(2): 375.

[36]

Zachariah Z, Espinosa-Marzal RM, Heuberger MP. Ion specific hydration in nano-confined electrical double layers. J. Colloid Interface Sci, 2017, 506, 263.

[37]

Baimpos T, Shrestha BR, Raman S, Valtiner M. Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05–3 M Li+ and Cs+ electrolyte solutions. Langmuir, 2014, 30(15): 4322.

[38]

Low PF. Influence of adsorbed water on exchangeable ion movement. Clays Clay Miner., 1960, 9(1): 219.

[39]

Manciu M, Ruckenstein E. Specific ion effects via ion hydration: I. Surface tension. Adv. Colloid Interface Sci., 2003, 105(1–3): 63.

[40]

Huang HH, Ruckenstein E. Effect of hydration of ions on double-layer repulsion and the hofmeister series. J. Phys. Chem. Lett., 2013, 4(21): 3725.

[41]

Miklavic SJ, Ninham BW. Competition for adsorption sites by hydrated ions. J. Colloid Interface Sci., 1990, 134(2): 305.

[42]

Biesheuvel PM, van Soestbergen M. Counterion volume effects in mixed electrical double layers. J. Colloid Interface Sci., 2007, 316(2): 490.

[43]

Butt HJ. Measuring local surface charge densities in electrolyte solutions with a scanning force microscope. Biophys. J., 1992, 63(2): 578.

[44]

Cuvillier N, Rondelez F. Breakdown of the Poisson-Boltzmann description for electrical double layers involving large multivalent ions. Thin Solid Films, 1998, 327–329, 19.

[45]

Sotres J, Lostao A, Gómez-Moreno C, Baró AM. Jumping mode AFM imaging of biomolecules in the repulsive electrical double layer. Ultramicroscopy, 2007, 107(12): 1207.

[46]

Heinz WF, Hoh JH. Relative surface charge density mapping with the atomic force microscope. Biophys. J, 1999, 76(1): 528.

[47]

Hiemstra T, Van Riemsdijk WH. On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. J. Colloid Interface Sci., 2006, 301(1): 1.

[48]

Yin XH, Gupta V, Du H, Wang XM, Miller JD. Surface charge and wetting characteristics of layered silicate minerals. Adv. Colloid Interface Sci., 2012, 179–182, 43.

[49]

Liu J, Sandaklie-Nikolova L, Wang XM, Miller JD. Surface force measurements at kaolinite edge surfaces using atomic force microscopy. J. Colloid Interface Sci., 2014, 420, 35.

[50]

T.X. Chen, Y.L. Zhao, H.L. Li, J. Liu, and S.X. Song, Electrokinetic characteristics of calcined kaolinite in aqueous electrolytic solutions, Surf. Rev. Lett., 22(2015), No. 3, art. No. 1550041.

[51]

Sinha P, Szilagyi I, Montes Ruiz-Cabello FJ, Maroni P, Borkovec M. Attractive forces between charged colloidal particles induced by multivalent ions revealed by confronting aggregation and direct force measurements. J. Phys. Chem. Lett., 2013, 4(4): 648.

[52]

Adamson AW. Physical Chemistry of Surfaces, 1990, New York, John Wiley & Sons Inc., 134.

[53]

Derjaguin BV, Dukhin SS. Theory of flotation of small and medium-size particles. Prog. Surf. Sci., 1993, 43(1–4): 241.

[54]

Andelman D. Lipowsky R, Sackmann E. Electrostatic properties of membranes: the Poisson-Boltzmann theory. Handbook of Biological Physics, 1995, Nederland, Elsevier, 603.

[55]

Borukhov I, Andelman D, Orland H. Adsorption of large ions from an electrolyte solution: A modified Poisson-Boltzmann equation. Electrochim. Acta, 2000, 46(2–3): 221.

[56]

Liu XM, Li H, Li R, Tian R. Analytical solutions of the nonlinear Poisson-Boltzmann equation in mixture of electrolytes. Surf. Sci., 2013, 607, 197.

[57]

Alijó PH R, Tavares FW, Biscaia EC Jr. Double layer interaction between charged parallel plates using a modified Poisson-Boltzmann equation to include size effects and ion specificity. Colloids Surf. A, 2012, 412, 29.

[58]

Ben-Yaakov D, Andelman D. Revisiting the Poisson-Boltzmann theory: Charge surfaces, multivalent ions and inter-plate forces. Physica A, 2010, 389(15): 2956.

[59]

Hsu JP, Yu HY, Tseng S. Approximate analytical expressions for the electrical potential between two planar, cylindrical, and spherical surfaces. J. Phys. Chem. B, 2006, 110(49): 25007.

[60]

Hsu JP, Huang CH. Electrical potentials of two identical planar, cylindrical, and spherical colloidal particles in a saltfree medium. J. Colloid Interface Sci., 2010, 348(2): 402.

[61]

Stankovich J, Carnie SL. Interactions between two spherical particles with nonuniform surface potentials: The linearized Poisson-Boltzmann theory. J. Colloid Interface Sci., 1999, 216(2): 329.

[62]

Wang JK, Wang MR, Li ZX. Lattice evolution solution for the nonlinear Poisson-Boltzmann equation in confined domains. Commun. Nonlinear Sci. Numer. Simul., 2008, 13(3): 575.

[63]

Liu LC, Neretnieks I. Homo-interaction between parallel plates at constant charge. Colloids Surf. A, 2008, 317(1–3): 636.

[64]

Kjellander R, Åkesson T, Jönsson B, Marčelja S. Double layer interactions in mono and divalent electrolytes: A comparison of the anisotropic HNC theory and Monte Carlo simulations. J. Chem. Phys., 1992, 97(2): 1424.

[65]

Kewalramani S, Guerrero-García GI, Moreau LM, Zwanikken JW, Mirkin CA, de La Cruz MO, Bedzyk MJ. Electrolyte-mediated assembly of charged nanoparticles. ACS Cent. Sci., 2016, 2(4): 219.

[66]

G.I. Guerrero-García, E. González-Tovar, M. Lozada-Cassou, and F. de J. Guevara-Rodríguez, The electrical double layer for a fully asymmetric 895 electrolyte around a spherical colloid?: An integral equation study, J. Chem. Phys., 123(2005), No. 3, art. No. 034703.

[67]

G.I. Guerrero-García, E. González-Tovar, and M. Chávez-Páez, Simulational and theoretical study of the spherical electrical double layer for a size-asymmetric electrolyte: The case of big coions, Phys. Rev. E, 80(2009), No. 2, art. No. 021501.

[68]

Guerrero-García GI, González-Tovar E, de la Cruz MO. Effects of the ionic size-asymmetry around a charged nanoparticle: Unequal charge neutralization and electrostatic screening. Soft Matter, 2010, 6(9): 2056.

[69]

G.I. Guerrero-García, E. González-tovar, and M.O. de la Cruz, Entropic effects in the electric double layer of model colloids with size-asymmetric 907 monovalent ions, J. Chem. Phys., 135(2011), No. 5, art. No. 054701.

[70]

G.I. Guerrero-García, P. González-Mozuelos, and M.O. de la Cruz, Potential of mean force between identical charged nanoparticles immersed in a size-asymmetric monovalent electrolyte, J. Chem. Phys., 135(2011), No. 16, art. No. 164705.

[71]

Guerrero-García GI, de la Cruz MO. Inversion of the electric field at the electrified liquid-liquid interface. J. Chem. Theory Comput., 2013, 9(1): 1.

[72]

Guerrero-García GI, Jing YF, de la Cruz MO. Enhancing and reversing the electricfield at the oil-water interface with size-asymmetric monovalent ions. Soft Matter, 2013, 9(26): 6046.

[73]

Z. Ovanesyan, B. Medasani, M.O. Fenley, G.I. Guerrero-García, M.O. de la Cruz, and M. Marucho, Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments, J. Chem. Phys., 141(2014), No. 22, art. No. 225103.

[74]

Guerrero-García GI, González-Tovar E, Quesada-Pérez M, Martín-Molina A. The non-dominance of counterions in charge asymmetric electrolytes: Non-monotonic precedence of the electrostatic screening and local inversion of the electric field by multivalent coions. Phys. Chem. Chem. Phys., 2016, 18(31): 21852.

[75]

Guerrero-García GI, Gonzalez-Mozuelos P, de la Cruz MO. Large counterions boost the solubility and renormalized charge of suspended nanoparticles. ACS Nano, 2013, 7(11): 9714.

[76]

Guerrero-García GI, de la Cruz MO. Polarization effects of dielectric nanoparticles in aqueous charge-asymmetric electrolytes. J. Phys. Chem. B, 2014, 118(29): 8854.

[77]

Guerrero-García GI, González-Tovar E, Chávez-Páez M, Kłos J, Lamperski S. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: The capacitive compactness. Phys. Chem. Chem. Phys, 2018, 20(1): 262.

[78]

Guerrero-García GI, González-Tovar E, Chávez-Páez M, Wei T. Expansion and shrinkage of the electrical double layer in charge-asymmetric electrolytes: A non-linear Poisson-Boltzmann description. J. Mol. Liq., 2019, 277, 104.

[79]

González-Tovar E, Jiménez-Ángeles F, Messina R, Lozada-Cassou M. A new correlation effect in the Helmholtz and surface potentials of the electrical double layer. J. Chem. Phys., 2004, 120(20): 9782.

[80]

C.L. Moraila-Martínez, G.I. Guerrero-García, M. Chávez-Páez, and E. González-Tovar, An experimental/theoretical method to measure the capacitive compactness of an aqueous electrolyte surrounding a spherical charged colloid, J. Chem. Phys., 148(2018), No. 15, art. No. 154703.

[81]

Peng CL, Zhong YH, Wang GS, Min FF, Qin L. Atomic-level insights into the adsorption of rare earth Y(OH)(sk3−n/n+) (n = 1−3) ions on kaolinite surface. Appl. Surf. Sci., 2019, 469, 357.

[82]

Li HL, Song SX, Dong XS, Min FF, Zhao YL, Peng CL, Nahmad Y. Molecular dynamics study of crystalline swelling of montmorillonite as affected by interlayer cation hydration. JOM, 2018, 70(4): 479.

[83]

Torres A, van Roij R, Téllez G. Finite thickness and charge relaxation in double-layer interactions. J. Colloid Interface Sci., 2006, 301(1): 176.

[84]

Paunov VN, Dimova RI, Kralchevsky PA, Broze G, Mehreteab A. The hydration repulsion between charged surfaces as an interplay of volume exclusion and dielectric saturation effects. J. Colloid Interface Sci., 1996, 182(1): 239.

[85]

Adler JJ, Rabinovich YI, Moudgil BM. Origins of the non-DLVO force between glass surfaces in aqueous solution. J. Colloid Interface Sci., 2001, 237(2): 249.

[86]

H.H. Liu, J. Lanphere, S. Walker, and Y. Cohen, Effect of hydration repulsion on nanoparticle agglomeration evaluated via a constant number Monte-Carlo simulation, Nanotechnology, 26(2015), No. 4, art. No. 045708.

[87]

Veeramasuneni S, Yalamanchili MR, Miller JD. Interactions between dissimilar surfaces in high ionic strength solutions as determined by atomic force microscopy. Colloids Surf. A, 1998, 131(1–3): 77.

[88]

Duan JM. Interfacial forces between silica surfaces measured by atomic force microscopy. J. Environ. Sci, 2009, 21(1): 30.

[89]

Schelero N, Hedicke G, Linse P, Klitzing RV. Effects of counterions and co-ions on foam films stabilized by anionic dodecyl sulfate. J. Phys. Chem. B, 2010, 114(47): 15523.

[90]

Mysels KJ, Jones MN. Direct measurement of the variation of double-layer repulsion with distance. Discuss. Faraday Soc., 1966, 42, 42.

[91]

Sheludko A. Thin liquid films. Adv. Colloid Interface Sci, 1967, 1(4): 391.

[92]

Bergeron V, Radke CJ. Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films. Langmuir, 1992, 8(12): 3020.

[93]

Kralchevsky PA, Danov KD, Basheva ES. Hydration force due to the reduced screening of the electrostatic repulsion in few-nanometer-thick films. Curr. Opin. Colloid Interface Sci., 2011, 16(6): 517.

[94]

Tadjiev DR, Hand RJ, Zeng P. Comparison of glass hydration layer thickness measured by transmission electron microscopy and nanoindentation. Mater. Lett., 2010, 64(9): 1041.

[95]

Zhao YL, Yi H, Jia FF, Li HL, Peng CS, Song SX. A novel method for determining the thickness of hydration shells on nanosheets: A case of montmorillonite in water. Powder Technol., 2017, 306, 74.

[96]

Lowe JP, Lowe DJ, Hodder APW, Wilson AT. A tritium-exchange method for obsidian hydration shell measurement. Chem. Geol., 1984, 46(4): 351.

[97]

Yeganeh MS, Dougal SM, Pink HS. Vibrational spectroscopy of water at liquid/solid interfaces: Crossing the isoelectric point of a solid surface. Phys. Rev. Lett., 1999, 83(6): 1179.

[98]

Ostroverkhov V, Waychunas GA, Shen YR. Vibrational spectra of water at water/α-quartz (0001) interface. Chem. Phys. Lett., 2004, 386(1–3): 144.

[99]

Hopkins AJ, McFearin CL, Richmond GL. Investigations of the solid-aqueous interface with vibrational sum-frequency spectroscopy. Curr. Opin. Solid State Mater. Sci., 2005, 9(1–2): 19.

[100]

Miyazawa K, Kobayashi N, Watkins M, Shluger AL, Amanod KI, Fukuma T. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy. Nanoscale, 2016, 8(13): 7334.

[101]

Ho R, Yuan JY, Shao ZF. Hydration force in the atomic force microscope: A computational study. Biophys. J, 1998, 75(2): 1076.

[102]

K. Kobayashi, N. Oyabu, K. Kimura, S. Ido, K. Suzuki, T. Imai, K. Tagami, M. Tsukada, and H. Yamada, Visualization of hydration layers on muscovite mica in aqueous solution by frequency-modulation atomic force microscopy, J. Chem. Phys., 138(2013), No. 18, art. No. 184704.

[103]

Yi H, Zhang X, Zhao YL, Liu LY, Song SX. Molecular dynamics simulations of hydration shell on montmorillonite (001) in water. Surf. Interface Anal., 2016, 48(9): 976.

[104]

Wang JW, Kalinichev AG, Kirkpatrick RJ. Molecular modeling of water structure in nano-pores between brucite (001) surfaces. Geochimi. Cosmochim. Acta, 2004, 68(16): 3351.

[105]

D.R. Martin and D.V. Matyushov, Hydration shells of proteins probed by depolarized light scattering and dielectric spectroscopy: Orientational structure is significant, positional structure is not, J. Chem. Phys, 141(2014), No. 22, art. No. 22D501.

[106]

Perry TD, Cygan RT, Mitchell R. Molecular models of a hydrated calcite mineral surface. Geochim. Cosmochim. Acta, 2007, 71(24): 5876.

[107]

Leng YS. Hydration force between mica surfaces in aqueous KCl electrolyte solution. Langmuir, 2012, 28(12): 5339.

[108]

Chen J, Min FF, Liu LY, Liu CF. Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations. Appl. Surf. Sci., 2019, 476, 6.

[109]

Duponchel L, Laurette S, Hatirnaz B, Treizebre A, Affouard F, Bocquet B. Terahertz microfluidic sensor for in situ exploration of hydration shell of molecules. Chemom. Intell. Lab. Syst., 2013, 123, 28.

[110]

Bourg IC, Sposito G. Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions. J. Colloid Interface Sci., 2011, 360(2): 701.

[111]

Bonthuis DJ, Netz RR. Beyond the continuum: How molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces. J. Phys. Chem. B, 2013, 117(39): 11397.

[112]

López-León T, Santander-Ortega MJ, Ortega-Vinuesa JL, Bastos-González DL. Hofmeister effects in colloidal systems: Influence of the surface nature. J. Phys. Chem. C, 2008, 112(41): 16060.

[113]

Leed EA, Pantano CG. Computer modeling of water adsorption on silica and silicate glass fracture surfaces. J. Non-Cryst. Solids, 2003, 325(1–3): 48.

[114]

C.D.F. Honig and W.A. Ducker, No-slip hydrodynamic boundary condition for hydrophilic particles, Phys. Rev. Lett., 98(2007), No. 2, art. No. 028305.

[115]

L. Joly, C. Ybert, E. Trizac, and L. Bocquet, Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics, J. Chem. Phys., 125(2006), No. 20, art. No. 204716.

[116]

Sendner C, Horinek D, Bocquet L, Netz RR. Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion. Langmuir, 2009, 25(18): 10768.

[117]

Alarcón LM, Malaspina DC, Schulz EP, Frechero MA, Appignanesi GA. Structure and orientation of water molecules at model hydrophobic surfaces with curvature: From graphene sheets to carbon nanotubes and fullerenes. Chem. Phys., 2011, 388(1–3): 47.

[118]

Smith GD, Swain JE, Bormann CL. Microfluidics for gametes, embryos, and embryonic stem cells. Semin. Reprod. Med., 2011, 29(1): 5.

[119]

Chang YI, Chang PK. The role of hydration force on the stability of the suspension of Saccharomyces cerevisiae—Application of the extended DLVO theory. Colloids Surf. A, 2002, 211(1): 67.

[120]

Valle-Delgado JJ, Molina-Bolívar JA, Galisteo-González F, Gálvez-Ruiz MJ. Evidence of hydration forces between proteins. Curr. Opin. Colloid Interface Sci., 2011, 16(6): 572.

[121]

Bhattacharjee A, Pribil AB, Randolf BR, Rode BM, Hofer TS. Hydration of Mg2+ and its influence on the water hydrogen bonding network via ab initio QMCF MD. Chem. Phys. Lett., 2012, 536, 39.

[122]

Suresh SJ, Kapoor K, Talwar S, Rastogi A. Internal structure of water around cations. J. Mol. Liq, 2012, 174, 135.

[123]

Kritayakornupong C, Plankensteiner K, Rode BM. Dynamics in the hydration shell of Hg2+ ion: Classical and ab initio QM/MM molecular dynamics simulations. Chem. Phys. Lett., 2003, 371(3–4): 438.

[124]

Tongraar A, Rode BM. Dynamical properties of water molecules in the hydration shells of Na+ and K+: Ab initio QM/MM molecular dynamics simulations. Chem. Phys. Lett., 2004, 385(5–6): 378.

[125]

Gierst L, Vandenberghen L, Nicolas E, Fraboni A. Ion pairing mechanisms in electrode processes. J. Electrochem. Soc., 1966, 113(10): 1025.

[126]

Collins KD. Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process. Methods, 2004, 34(3): 300.

[127]

Collins KD. Charge density-dependent strength of hydration and biological structure. Biophys. J., 1997, 72(1): 65.

[128]

Adapa S, Swamy DR, Kancharla S, Pradhan S, Malani A. Role of mono- and divalent surface cations on the structure and adsorption behavior of water on mica surface. Langmuir, 2018, 34(48): 14472.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/