First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW

Uttam Bhandari , Congyan Zhang , Shengmin Guo , Shizhong Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1398 -1404.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1398 -1404. DOI: 10.1007/s12613-020-2077-1
Article

First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW

Author information +
History +
PDF

Abstract

Refractory high-entropy alloys (RHEAs) are emerging as new materials for high temperature structural applications because of their stable mechanical and thermal properties at temperatures higher than 2273 K. In this study, the mechanical properties of MoNbTaTiW REDEA are examined by applying calculations based on first-principles density functional theory (DFT) and using a large unit cell with 100 randomized atoms. The phase calculation of MoNbTaTiW with CALPHAD method shows the existence of a stable body-centered cubic structure at a high temperature and a hexagonal closely packed phase at a low temperature. The predicted phase, shear modulus, Young’s modulus, Poisson’s ratio, and hardness values are consistent with available experimental results. The linear thermal expansion coefficient, vibrational entropy, and vibrational heat capacity of MoNbTaTiW RHEA are investigated in accordance with Debye-Grüneisen theory. These results may provide a basis for future research related to the application of RHEAs.

Keywords

high-entropy alloy / MoNbTaTiW / mechanical properties / thermodynamic properties / density functional theory

Cite this article

Download citation ▾
Uttam Bhandari, Congyan Zhang, Shengmin Guo, Shizhong Yang. First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(10): 1398-1404 DOI:10.1007/s12613-020-2077-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[2]

Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90(2007), No. 18, art. No. 181904.

[3]

Chuang MH, Tsai MH, Wang WR, Lin SJ, Yeh JW. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater., 2011, 59(16): 6308.

[4]

Wen LH, Kou HC, Li JS, Chang H, Xue XY, Zhou L. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics, 2009, 17(4): 266.

[5]

Jung CW, Kang K, Marshal A, Pradeep KG, Seol J-B, Lee HM, Choi P-P. Effects of phase composition and elemental partitioning on soft magnetic properties of AlFe-CoCrMn high entropy alloys. Acta Mater., 2019, 171, 31.

[6]

Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698.

[7]

Han ZD, Chen N, Zhao SF, Fan LW, Yang GN, Shao Y, Yao KF. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 2017, 84, 153.

[8]

Han ZD, Luan HW, Liu X, Chen N, Li XY, Shao Y, Yao KF. Microstructures and mechanical properties of TixN-bMoTaW refractory high-entropy alloys. Mater. Sci. Eng. A, 2018, 712, 380.

[9]

Mishra A, Priyadarshan G, Clark D, Lu Y, Shi RH. Theoretical investigations on structural stability and elastic properties of MoNbTaW-X (= Ti/V) high entropy alloys. J. Mater. Sci. Res. Rev., 2019, 4(2): 1.

[10]

Andersson J-O, Helander T, Höglund L, Shi PF, Sundman B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad, 2002, 26(2): 273.

[11]

Larsson H. A model for 1D multiphase moving phase boundary simulations under local equilibrium conditions. Calphad, 2014, 47, 1.

[12]

Lederer Y, Toher C, Vecchio KS, Curtarolo S. The search for high entropy alloys: A high-throughput ab-initio approach. Acta Mater., 2018, 159, 364.

[13]

Mao HH, Chen HL, Chen Q. TCHEA1: A thermodynamic database not limited for “high entropy” alloys. J. Phase Equilib. Diffus., 2017, 38, 353.

[14]

Chen HL, Mao HH, Chen Q. Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips. Mater. Chem. Phys., 2018, 210, 279.

[15]

Gao MC, Zhang B, Yang S, Guo SM. Senary refractory high-entropy alloy HfNbTaTiVZr. Metall. Mater. Trans. A, 2016, 47(7): 3333.

[16]

Abu-Odeh A, Galvan E, Kirk T, Mao H, Chen Q, Mason P, Malak R, Arróyave R. Efficient exploration of the high entropy alloy composition-phase space. Acta Mater., 2018, 152, 41.

[17]

Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B): B864.

[18]

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133.

[19]

Bhandari U, Zhang CY, Yang SZ. Mechanical and thermal properties of low-density Al20+xCr20−xMo20−yTi20V20+y alloys. Crystals, 2020, 10(4): 278.

[20]

Blöchl PE. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953.

[21]

Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992, 46(11): 6671.

[22]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865.

[23]

Donald KE. The Art of Computer Programming, 1968, Boston, Addison Wesley

[24]

Y. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations, Phys. Rev. B, 63(2001), No. 17, art. No. 174103.

[25]

Y. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B, 65(2002), No. 10, art. No. 104104.

[26]

Anderson OL. A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids, 1963, 24(7): 909.

[27]

Andrews KW. Elastic moduli of polycrystalline cubic metals. J. Phys. D: Appl. Phys., 1978, 11(18): 2527.

[28]

F. Drucker, E. Grüneisen, F. Körber, P. Kohnstamm, K. Scheel, E. Schrödinger, F. Simon, J.D. van der Waals, and F. Henning, Thermische Eigenschaften der Stoffe, H. Geiger and K. Scheel, eds., Springer, Berlin, 1926.

[29]

Mayer B, Anton H, Bott E, Methfessel M, Sticht J, Harris J, Schmidt PC. Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics, 2003, 11(1): 23.

[30]

Ashcroft NW, Mermin ND. Solid State Physics, 1976, Philadelphia, Saunders College Publishing

[31]

Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys., 2012, 132(2–3): 233.

[32]

S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505.

[33]

Wang ZJ, Huang YH, Yang Y, Wang JC, Liu CT. Atomic-size effect and solid solubility of multicomponent alloys. Scripta Mater., 2015, 94, 28.

[34]

Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans., 2005, 46(12): 2817.

[35]

Gulliver GH. The quantitative effect of rapid cooling upon the constitution of binary alloys. J. Inst. Met., 1913, 9(1): 120.

[36]

Scheil E. Bemerkungen zur schichtkristallbildung. Z. Metallkd., 1942, 34(3): 70.

[37]

Born M, Huang K. Dynamical Theory of Crystal Lattices, 1956, Oxford, Clarendon Press

[38]

Pugh SF. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823.

[39]

Y.L. Hu, L.H. Bai, Y.G. Tong, D.Y. Deng, X.B. Liang, J. Zhang, Y.J. Li, and Y.X. Chen, First-principle calculation investigation of NbMoTaW based refractory high entropy alloys, J. Alloys Compd., 827(2020), art. No. 153963.

[40]

Liu CT, Schneibel JH, Maziasz PJ, Wright JL, Easton DS. Tensile properties and fracture toughness of TiAl alloys with controlled microstructures. Intermetalics, 1996, 4(6): 429.

[41]

Luan JH, Jiao ZB, Liu WH, Lu ZP, Zhao WX, Liu CT. Compositional and microstructural optimization and mechanical-property enhancement of cast Ti alloys based on Ti-6Al-4V alloy. Mater. Sci. Eng. A, 2017, 704, 91.

[42]

Wu YD, Cai YH, Chen XH, Wang T, Si JJ, Wang L, Wang YD, Hui XD. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des., 2015, 83, 651.

[43]

Juan CC, Tseng KK, Hsu WL, Tsai MH, Tsai CW, Lin CM, Chen SK, Lin SJ, Yeh JW. Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys. Mater. Lett., 2016, 175, 284.

[44]

Nguyen-Manh D, Mrovec M, Fitzgerald SP. Dislocation driven problems in atomistic modelling of materials. Mater. Trans., 2008, 49(11): 2497.

[45]

Tvergaard V, Hutchinson JW. Microcracking in ceramics induced by thermal expansion or elastic anisotropy. J. Am. Ceram. Soc., 1988, 71(3): 157.

[46]

J. Lei, S. Guo, E. Khosravi, and S. Yang, The stability and stiffness of TaNbHfZrTi alloy from first principles simulation, [in] Materials Science & Technology 2012 (MS&T’12) Conference Proceedings, Pittsburgh, 2012, p. 196.

[47]

Birch F. Finite elastic strain of cubic crystals. Phys. Rev., 1947, 71(11): 809.

[48]

Wang S, Zhao YH, Hou H, Wen ZQ, Zhang PL, Liang JQ. Effect of anti-site point defects on the mechanical and thermodynamic properties of MgZn2, MgCu2 Laves phases: A first-principle study. J. Solid State Chem., 2018, 263, 18.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/