Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2-C electrocatalyst for methanol oxidation reaction

Guo-qing Li , Pu-kang Wen , Chen-qiang Gao , Tian-yi Zhang , Jun-yang Hu , Yu-hao Zhang , Shi-you Guan , Qing-feng Li , Bing Li

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (7) : 1224 -1232.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (7) : 1224 -1232. DOI: 10.1007/s12613-020-2076-2
Article

Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2-C electrocatalyst for methanol oxidation reaction

Author information +
History +
PDF

Abstract

Pt/CeO2-C catalysts with CeO2 pre-calcined at 300–600°C were synthesized by combining hydrothermal calcination and wet impregnation. The effects of the pre-calcined CeO2 on the performance of Pt/CeO2-C catalysts in methanol oxidation were investigated. The Pt/CeO2-C catalysts with pre-calcined CeO2 at 300–600°C showed an average particle size of 2.6–2.9 nm and exhibited better methanol electro-oxidation catalytic activity than the commercial Pt/C catalyst. In specific, the Pt/CeO2-C catalysts with pre-calcined CeO2 at 400°C displayed the highest electrochemical surface area value of 68.14 m2·g−1 and I f/I b ratio (the ratio of the forward scanning peak current density (I f) and the backward scanning peak current density (I b)) of 1.26, which are considerably larger than those (53.23 m2·g−1 and 0.79, respectively) of the commercial Pt/C catalyst, implying greatly enhanced CO tolerance.

Keywords

direct methanol fuel cell / platinum/cerium dioxide-carbon / electrocatalyst / methanol oxidation

Cite this article

Download citation ▾
Guo-qing Li, Pu-kang Wen, Chen-qiang Gao, Tian-yi Zhang, Jun-yang Hu, Yu-hao Zhang, Shi-you Guan, Qing-feng Li, Bing Li. Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2-C electrocatalyst for methanol oxidation reaction. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(7): 1224-1232 DOI:10.1007/s12613-020-2076-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Du WX, Yang GX, Wong E, Deskins NA, Frenkel AI, Su D, Teng XW. Platinum-tin oxide core-shell catalysts for efficient electro-oxidation of ethanol. J. Am. Chem. Soc., 2014, 136(31): 10862.

[2]

Munjewar SS, Thombre SB, Mallick RK. Approaches to overcome the barrier issues of passive direct methanol fuel cell - Review. Renewable Sustainable Energy Rev., 2017, 67, 1087.

[3]

Léger JM, Rousseau S, Coutanceau C, Hahn F, Lamy C. How bimetallic electrocatalysts does work for reactions involved in fuel cells?: Example of ethanol oxidation and comparison to methanol. Electrochim. Acta, 2005, 50(25–26): 5118.

[4]

Pai NS, Chang PS, Yen SK. Platinum/vivianite bifunction catalysts for DMFC. Int. J. Hydrogen Energy, 2013, 38(13): 5259.

[5]

Jackson C, Conrad O, Levecque P. Systematic study of Pt-Ru/C catalysts prepared by chemical deposition for direct methanol fuel cells. Electrocatalysis, 2017, 8(3): 224.

[6]

Dickinson AJ, Carrette LPL, Collins JA, Friedrich KA, Stimming U. Preparation of a Pt-Ru/C catalyst from carbonyl complexes for fuel cell applications. Electrochim. Acta, 2002, 47(22–23): 3733.

[7]

Thiagarajan V, Karthikeyan P, Manoharan R, Sampath S, Hernández-Ramírez A, Sánchez-Castro ME, Alonso-Lemus IL, Rodríguez-Varela FJ. Pt-Ru-NiTiO3 nanoparticles dispersed on Vulcan as high performance electrocatalysts for the methanol oxidation reaction (MOR). Electrocatalysis, 2018, 9(5): 582.

[8]

Pan D, Li XW, Zhang AF. Platinum assisted by carbon quantum dots for methanol electro-oxidation. Appl. Surf. Sci., 2018, 427, 715.

[9]

Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources, 2006, 155(2): 95.

[10]

Glüsen A, Dionigi F, Paciok P, Heggen M, Müller M, Gan L, Strasser P, Dunin-Borkowski RE, Stolten D. Dealloyed PtNi-core-shell nanocatalysts enable significant lowering of Pt electrode content in direct methanol fuel cells. ACS Catal., 2019, 9(5): 3764.

[11]

Serrà A, Montiel M, Gómez E, Vallés E. Electrochemical synthesis of mesoporous CoPt nanowires for methanol oxidation. Nanomaterials, 2014, 4(2): 189.

[12]

Martin LG, Green I, Wang X, Pasupathi S, Pollet BG. Pt-Sn/C as a possible methanol-tolerant cathode catalyst for DMFC. Electrocatalysis, 2013, 4(3): 144.

[13]

Zhang S, Xia ZM, Ni T, Zhang ZY, Ma YY, Qu YQ. Strong electronic metal-support interaction of Pt/CeC2 enables efficient and selective hydrogenation of quinolines at room temperature. J. Catal., 2018, 359, 101.

[14]

Meher SK, Rao GR. Polymer-assisted hydrothermal synthesis of highly reducible shuttle-shaped CeO2: Microstructural effect on promoting Pt/C for methanol electrooxidation. ACS Catal., 2012, 2(12): 2795.

[15]

Nie L, Mei DH, Xiong HF, Peng B, Ren ZB, Hernandez XIP, DeLaRiva A, Wang M, Engelhard MH, Kovarik L, Datye AK, Wang Y. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science, 2017, 358(6369): 1419.

[16]

Cui ZM, Feng LG, Liu CP, Xing W. Pt nanoparticles supported on WO3/C hybrid materials and their electrocatalytic activity for methanol electro-oxidation. J. Power Sources, 2011, 196(5): 2621.

[17]

Wang XH, Hu XL, Huang JL, Zhang WJ, Ji WJ, Hui Y, Yao XX. Electrospinning synthesis of porous carbon fiber supported Pt-SnO2 anode catalyst for direct ethanol fuel cell. Solid State Sci., 2019, 94, 64.

[18]

Lin H, Dong YB, Jiang LY. Preparation of calcium carbonate particles coated with titanium dioxide. Int. J. Miner. Metall. Mater., 2009, 16(5): 592.

[19]

Ai TT, Wang F, Feng XM. Oxidation behavior of in-situ Al2O3/TiAl composites at 900°C in static air. Int. J. Miner. Metall. Mater., 2009, 16(3): 339.

[20]

Justin P, Rao GR. Methanol oxidation on MoO3 promoted Pt/C electrocatalyst. Int. J. Hydrogen Energy, 2011, 36(10): 5875.

[21]

Int. J. Miner. Metall. Mater., 2011, 18(5) art. No. 594

[22]

NPG Asia Mater., 2015, 7(5) art. No. e179

[23]

Yu SP, Liu QB, Yang WS, Han KF, Wang ZM, Zhu H. Graphene-CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells. Electrochim. Acta, 2013, 94, 245.

[24]

Xu F, Wang DQ, Sa BS, Yu Y, Mu SC. One-pot synthesis of Pt/CeO2/C catalyst for improving the ORR activity and durability of PEMFC. Int. J. Hydrogen Energy, 2017, 42(18): 13011.

[25]

Wang W, Dong YJ, Yang Y, Chai D, Kang YM, Lei ZQ. CeO2 overlapped with nitrogen-doped carbon layer anchoring Pt nanoparticles as an efficient electrocatalyst towards oxygen reduction reaction. Int. J. Hydrogen Energy, 2018, 43(27): 12119.

[26]

Xu H, Wang AL, Tong YX, Li GR. Enhanced catalytic activity and stability of Pt/CeO2/PANI hybrid hollow nanorod arrays for methanol electro-oxidation. ACS Catal., 2016, 6(8): 5198.

[27]

Cordeiro GL, de Camargo EF, Santos MCL, Pereira CV, Ussui V, de Lima NB, Neto AO, Lazar DRR. Improved Pt/CeO2 electrocatalysts for ethanol electro-oxidation. Int. J. Electrochem. Sci., 2018, 13(7): 6388.

[28]

He BB, Zhao QG, Zeng ZG, Wang XH, Han S. Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core-shell catalyst for CO oxidation at low temperature. J. Mater. Sci., 2015, 50(19): 6339.

[29]

Qi ZY, Xiao CX, Liu C, Goh TW, Zhou L, Maligal-Ganesh R, Pei YC, Li XL, Curtiss LA, Huang WY. Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc., 2017, 139(13): 4762.

[30]

Yang JJ, Tan XY, Qian Y, Li L, Xue Y, Dai Z, Wang HT, Qu WL, Chu YY. Methanol oxidation on Pt/CeO2@C-N electrocatalysts prepared by the in-situ carbonization of polyvinylpyrrolidone. J. Appl. Electrochem., 2016, 46(7): 779.

[31]

Gu DM, Chu YY, Wang ZB, Jiang ZZ, Yin GP, Liu Y. Methanol oxidation on Pt/CeO2-C electrocatalyst prepared by microwave-assisted ethylene glycol process. Appl. Catal. B, 2011, 102(1–2): 9.

[32]

Yu JG, Wang B. Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl. Catal. B, 2010, 94(3–4): 295.

[33]

Abbas F, Iqbal J, Jan T, Badshah N, Mansoor Q, Ismail M. Structural, morphological, Raman, optical, magnetic, and antibacterial characteristics of CeO2 nanostructures. Int. J. Miner. Metall. Mater., 2016, 23(1): 102.

[34]

Cai ZY, Song B, Li LF, Liu Z, Cui XK. Effect of CeO2 on heat transfer and crystallization behavior of rare earth alloy steel mold fluxes. Int. J. Miner. Metall. Mater., 2019, 26(5): 565.

[35]

Fugane K, Mori T, Ou DR, Suzuki A, Yoshikawa H, Masuda T, Uosaki K, Yamashita Y, Ueda S, Kobayashi K, Okazaki N, Matolinova I, Matolin V. Activity of oxygen reduction reaction on small amount of amorphous CeOx promoted Pt cathode for fuel cell application. Electrochim. Acta, 2011, 56(11): 3874.

[36]

Kennedy BJ, Hamnett A. Oxide formation and reactivity for methanol oxidation on platinised carbon anodes. J. Electroanal. Chem. Interfacial Electrochem., 1990, 283(1–2): 271.

[37]

Larachi F, Pierre J, Adnot A, Bernis A. Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Appl. Surf. Sci., 2002, 195(1–4): 236.

[38]

Zhao J, Chen WX, Zheng YF, Li X. Novel carbon supported hollow Pt nanospheres for methanol electrooxidation. J. Power Sources, 2006, 162(1): 168.

[39]

Yousaf AB, Imran M, Uwitonze N, Zeb A, Zaidi SJ, Ansari TM, Yasmeen G, Manzoor S. Enhanced electrocatalytic performance of Pt3Pd1 alloys supported on CeO2/C for methanol oxidation and oxygen reduction reactions. J. Phys. Chem, 2017, 121(4): 2069.

[40]

Yuan XT, Ge HX, Liu XY, Wang X, Chen WG, Dong WJ, Huang FQ. Efficient catalyst of defective CeO2−x and few-layer carbon hybrid for oxygen reduction reaction. J. Alloys Compd., 2016, 688, 613.

[41]

Wei C, Sun SN, Mandler D, Wang X, Qiao SZ, Xu ZJ. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem. Soc. Rev., 2019, 48(9): 2518.

[42]

Zhao YC, Zhan L, Tian JN, Nie SL, Ning Z. Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline medium. Electrochim. Acta, 2011, 56(5): 1967.

[43]

Ting CC, Chao CH, Tsai CY, Cheng IK, Pan FM. Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect. Appl. Surf. Sci., 2017, 416, 365.

[44]

Zhan FW, Bian T, Zhao WG, Zhang H, Jin MS, Yang DR. Facile synthesis of Pd-Pt alloy concave nanocubes with high-index facets as electrocatalysts for methanol oxidation. CrystEngComm, 2014, 16(12): 2411.

[45]

Small, 2019, 15(38) art. No. 1902951

[46]

Chen HL, Duan JL, Zhang XL, Zhang YF, Guo C, Nie L, Liu XW. One step synthesis of Pt/CeO2-graphene catalyst by microwave-assisted ethylene glycol process for direct methanol fuel cell. Mater. Lett., 2014, 126, 9.

[47]

Scibioh MA, Kim SK, Cho EA, Lim TH, Hong SA, Ha HY. Pt-CeO2/C anode catalyst for direct methanol fuel cells. Appl. Catal. B, 2008, 84(3–4): 773.

[48]

Campbell CT, Peden CHF. Oxygen vacancies and catalysis on ceria surfaces. Science, 2005, 309(5735): 713.

[49]

Mamontov E, Dmowski W, Egami T, Kao CC. Electronic excitation in a catalytic support oxide, CeO2. J. Phys. Chem. Solids, 2000, 61(3): 431.

[50]

Yoon K, Yang Y, Lu P, Wan DH, Peng HC, Masias KS, Fanson PT, Campbell CT, Xia YN. A highly reactive and sinter-resistant catalytic system based on platinum nanoparticles embedded in the inner surfaces of CeO2 hollow fibers. Angew. Chem. Int. Ed., 2012, 51(38): 9543.

[51]

Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger JM, Lamy C. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes. J. Electroanal. Chem., 1998, 444(1): 41.

[52]

Ekrami-Kakhki M-S, Farzaneh N, Abbasi S, Makiabadi B. Electrocatalytic activity of Pt nanoparticles supported on novel functionalized reduced graphene oxide-chitosan for methanol electrooxidation. J. Mater. Sci.: Mater. Electron., 2017, 28(17): 12373.

[53]

Ramani S, Sarkar S, Vemuri V, Peter SC. Chemically designed CeO2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid. J. Mater. Chem. A, 2017, 5(23): 11572.

[54]

Yang JJ, Chu YY, Li L, Wang HT, Dai Z, Tan XY. Effects of calcination temperature and CeO2 contents on the performance of Pt/CeO2-CNTs hybrid nanotube catalysts for methanol oxidation. J. Appl. Electrochem., 2016, 46(3): 369.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/