Effect of groove rolling on the microstructure and properties of Cu-Nb microcomposite wires

Peng-fei Wang , Ming Liang , Xiao-yan Xu , Jian-qing Feng , Cheng-shan Li , Ping-xiang Zhang , Jin-shan Li

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (2) : 279 -284.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (2) : 279 -284. DOI: 10.1007/s12613-020-2073-5
Article

Effect of groove rolling on the microstructure and properties of Cu-Nb microcomposite wires

Author information +
History +
PDF

Abstract

Cu-Nb microcomposite wire was successfully prepared by a groove rolling process. The effects of groove rolling on the diffraction peaks, microstructure, and properties of the Cu-Nb microcomposite were investigated and the microstructure evolutions and strengthening mechanism were discussed. The tensile strength of the Cu-Nb microcomposite wire with a diameter of 2.02 mm was greater than 1 GPa, and its conductivity reached 68% of the International Annealed Copper Standard, demonstrating the Cu-Nb microcomposite wire with high tensile strength and high conductivity after groove rolling. The results show that an appropriate groove rolling method can improve the performance of the Cu-Nb microcomposite wire.

Keywords

groove rolling / microstructure / strengthening mechanism / copper-niobium microcomposites

Cite this article

Download citation ▾
Peng-fei Wang, Ming Liang, Xiao-yan Xu, Jian-qing Feng, Cheng-shan Li, Ping-xiang Zhang, Jin-shan Li. Effect of groove rolling on the microstructure and properties of Cu-Nb microcomposite wires. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(2): 279-284 DOI:10.1007/s12613-020-2073-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun QQ, Jiang F, Deng L, Xiao HX, Li L, Liang M, Peng T. Uniaxial fatigue behavior of Cu-Nb micro-composite conductor, part I: Effect of peak stress and stress ratio. Int. J. Fatigue, 2016, 91, 275.

[2]

Wang J, Hoagland RG, Hirth JP, Misra A. Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces. Acta Mater., 2008, 56(13): 3109.

[3]

L. Thilly, P.O. Renault, V. Vidal, F. Lecouturier, S. Van Petegem, U. Stuhr, and H. Van Swygenhoven, Plasticity of multiscale nanofifilamentary Cu/Nb composite wires during in situ neutron diffraction: Codeformation and size effect, Appl. Phys. Lett., 88(2006), No. 19, art. No. 191906.

[4]

Han K, Toplosky VJ, Walsh R, Swenson C, Lesch B, Pantsyrnyi VI. Properties of high strength Cu-Nb conductor for pulsed magnet applications. IEEE Trans. Appl. Supercond., 2002, 12(1): 1176.

[5]

Kindo K. 100 T magnet developed in Osaka. Physica B, 2001, 294–295, 585.

[6]

Thilly L, Petegem SV, Renault P-O, Lecouturier F, Vidal V, Schmitt B, Van Swygenhoven H. A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires. Acta Mater., 2009, 57(11): 3157.

[7]

Pan XC, Zhang J, Huang Y, Liu YC. Construction of metallurgical interface with high strength between immiscible Cu and Nb by direct bonding method. J. Alloys Compd., 2017, 723, 1053.

[8]

P.F. Wang, P.X. Zhang, M. Liang, C.S. Li, and J.S. Li, Heat treatment effect on the microstructure and properties of a high-strength and high-conductivity Cu-Nb-Cu microcomposite, IEEE Trans. Appl. Supercond., 29(2019), No. 4, art. No. 6000205.

[9]

Shimoyama K, Yokoyama S, Kaneko S, Fujita F. Effect of grooved roll profiles on microstructure evolutions of AZ31 sheets in Periodical Straining Rolling process. Mater. Sci. Eng. A, 2014, 611, 58.

[10]

Zeng LF, Gao R, Fang QF, Wang XP, Xie ZM, Miao S, Hao T, Zhang T. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Mater., 2016, 110, 341.

[11]

Knezevic M, Bhattacharyya A. Characterization of micro-structure in Nb rods processed by rolling: Effect of grooved rolling die geometry on texture uniformity. Int. J. Refract. Met. Hard Mater., 2017, 66, 44.

[12]

Nyilas RD, Spolenak R. Orientation-dependent ductile-to-brittle transitions in nanostructured materials. Acta Mater., 2008, 56(19): 5627.

[13]

Lim SCV, Rollett AD. Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu-Nb composite. Mater. Sci. Eng. A, 2009, 520(1–2): 189.

[14]

B. Zhang, C.L. Yang, Y.X. Sun, X.L. Li, and F. Liu, The micro-structure, mechanical properties and tensile deformation mechanism of rolled AlN/AZ91 composite sheets, Mater. Sci. Eng. A, 763(2019), art. No. 138118.

[15]

Al-Fadhalah K, Tomé CN, Beaudoin AJ, Robertson IM, Hirth JP, Misra A. Modeling texture evolution during rolling of a Cu-Nb multilayered system. Philos. Mag., 2005, 85(13): 1419.

[16]

Wu Q, Xu WX, Zhang LC. Microstructure-based modelling of fracture of particulate reinforced metal matrix composites. Composites Part B, 2019, 163, 384.

[17]

Youssef KM, Abaza MA, Scattergood RO, Koch CC. High strength, ductility, and electrical conductivity of in-situ consolidated nanocrystalline Cu-1%Nb. Mater. Sci. Eng. A, 2018, 711, 350.

[18]

Fan Z, Xue S, Wang J, Yu KY, Wang H, Zhang X. Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. Acta Mater., 2016, 120, 327.

[19]

Changela K, Krishnaswamy H, Digavalli RK. Development of combined groove pressing and rolling to produce ultra-fine grained Al alloys and comparison with cryorolling. Mater. Sci. Eng. A, 2019, 760, 7.

[20]

Shang XQ, Zhang HM, Cui ZS, Fu MW, Shao JB. A multiscale investigation into the effect of grain size on void evolution and ductile fracture: Experiments and crystal plasticity modeling. Int. J. Plast., 2020, 125, 133.

[21]

Shen DP, Zhou HB, Tong WP. Influence of deformation temperature on the microstructure and thermal stability of HPT-consolidated Cu-1%Nb alloys. J. Mater. Res. Technol., 2019, 8(6): 6396.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/