Effect of TiB2 and Al3Ti on the microstructure, mechanical properties and fracture behaviour of near eutectic Al-12.6Si alloy

Surajit Basak , Prosanta Biswas , Surajit Patra , Himadri Roy , Manas Kumar Mondal

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (7) : 1174 -1185.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (7) : 1174 -1185. DOI: 10.1007/s12613-020-2070-8
Article

Effect of TiB2 and Al3Ti on the microstructure, mechanical properties and fracture behaviour of near eutectic Al-12.6Si alloy

Author information +
History +
PDF

Abstract

A near eutectic Al-12.6Si alloy was developed with 0.0wt%, 2.0wt%, 4.0wt%, and 6.0wt% Al-5Ti-1B master alloy. The microstructural morphology, hardness, tensile strength, elongation, and fracture behaviour of the alloys were studied. The unmodified Al-12.6Si alloy has an irregular needle and plate-like eutectic silicon (ESi) and coarse polygonal primary silicon (PSi) particles in the matrix-like α-Al phase. The PSi, ESi, and α-Al morphology and volume fraction were changed due to the addition of the Al-5Ti-1B master alloy. The hardness, UTS, and elongation improved due to the microstructural modification. Nano-sized in-situ Al3Ti particles and ex-situ TiB2 particles caused the microstructural modification. The fracture images of the developed alloys exhibit a ductile and brittle mode of fracture at the same time. The Alα5Tiα1B modified alloys have a more ductile mode of fracture and more dimples compared to the unmodified alloy.

Keywords

Al-Si alloy / Alα5Tiα1B modification / modification mechanism / mechanical properties / fracture analysis

Cite this article

Download citation ▾
Surajit Basak, Prosanta Biswas, Surajit Patra, Himadri Roy, Manas Kumar Mondal. Effect of TiB2 and Al3Ti on the microstructure, mechanical properties and fracture behaviour of near eutectic Al-12.6Si alloy. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(7): 1174-1185 DOI:10.1007/s12613-020-2070-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Biswas, M.K. Mondal, and D. Mandal, Effect of Mg2Si concentration on the dry sliding wear behavior of Al-Mg2Si composite, J. Tribol., 141(2019), No. 8, art. No. 081601.

[2]

Biswas P, Prasadu KD, Mondal MK. Effect of Bi addition on microstructure and mechanical properties of hypereutectic Al-17.6Si alloy. Mater. Res. Express, 2019, 6(11): 1165b9.

[3]

Li CL, Pan Y, Lu T, Jing LJ, Pi JH. Effects of Ti and La additions on the microstructures and mechanical properties of B-Refined and Sr-modified Al-11Si alloys. Met. Mater. Int., 2018, 24(5): 1133.

[4]

Zhang JH, Xing SM, Ao XH, Sun P, Wang RF. Effect of Ca modification on the elemental composition, microstructure and tensile properties of Al-7Si-0.3Mg alloy. Int. J. Miner. Metall. Mater., 2019, 26(11): 1457.

[5]

Ahmad R, Asmael MBA, Shahizan NR, Gandouz S. Reduction in secondary dendrite arm spacing in cast eutectic Al-Si piston alloys by cerium addition. Int. J. Miner. Metall. Mater, 2017, 24(1): 91.

[6]

Rao JS, Zhang J, Liu RX, Zheng J, Yin DD. Modification of eutectic Si and the microstructure in an Al-7Si alloy with barium addition. Mater. Sci. Eng. A, 2018, 728, 72.

[7]

Kim KH, Kim MS. High temperature tensile properties of hypereutectic Al-25Si based alloy. Met. Mater. Int., 2018, 24(1): 136.

[8]

Wang JH, Zhu JQ, Liu Y, Peng HP, Su XP. Effect of spheroidization of eutectic Si on mechanical properties of eutectic Al-Si alloys. J. Mater. Res., 2018, 33(12): 1773.

[9]

Hazra B, Bera S, Show BK. Enhanced elevated temperature wear resistance of Al-17Si-5Cu alloy after a novel short duration heat treatment. Int. J. Miner. Metall. Mater., 2019, 26(3): 360.

[10]

P. Biswas, S. Patra and M.K. Mondal, Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy, IOP Conference Series: Mater. Sci. Eng., 338(2018), No. 12, art. No. 012043.

[11]

Biswas P, Patra S, Roy H, Tiwary CS, Paliwal M, Mondal MK. Effect of Mn addition on the mechanical properties of Al-12.6Si alloy: Role of Al15(MnFe)3Si2 intermetallic and microstructure modification. Met. Mater. Int., 2021, 27, 1713.

[12]

Y.H. Zhang, C.Y. Yea, Y.P. Shen, W. Chang, D.H. StJohn, G. Wang, and Q.J. Zhai, Grain refinement of hypoeutectic Al-7wt.%Si alloy induced by an Al-V-B master alloy, J. Alloys Compd., 812(2020), art. No. 152022.

[13]

Barbosa CR, Machado GH, Azevedo HM, Rocha FS, Filho JC, Pereira AA, Rocha OL. Tailoring of processing parameters, dendritic microstructure, Si/intermetallic particles and microhardness in as cast and heat treated samples of Al7Si0.3Mg alloy. Met. Mater. Int., 2020, 26, 370.

[14]

Khemraj Jha AK, Ojha SN. Deformation and fracture characteristics of complex Al-Si alloy during high speed forging under different processing conditions. Int. J. Mater. Prod. Technol., 2019, 58(1): 32.

[15]

Lu T, Pan Y, Wu JL, Tao SW, Chen Y. Effects of La addition on the microstructure and tensile properties of Al-Si-Cu-Mg casting alloys. Int. J. Miner. Metall. Mater., 2015, 22(4): 405.

[16]

Yang YJ, Hua P, Li XF, Chen K, Zhou W. Effect of multipass on microstructure and impact toughness of as-cast Al-20Si alloy via friction stir processing. Phys. Met. Metallogr., 2019, 120(11): 1226.

[17]

M.J. Wang, K.Q. Hu, G.L. Liu, and X.F. Liu, Synchronous improvement of electrical and mechanical performance of A356 alloy reinforced by boron coupling nano-AlNp, J. Alloys Compd., 814(2020), art. No. 152217.

[18]

Nowak M, Bolzoni L, Hari Babu N. The effect of Nb-B inoculation on binary hypereutectic and near-eutectic LM13 Al-Si cast alloys. J. Alloys Compd., 2015, 641, 22.

[19]

Lin S, Aliravci C, Pekguleryuz MO. Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining. Metall. Mater. Trans. A, 2007, 38(5): 1056.

[20]

Ghedjati K, Fleury E, Hamani MS, Benchiheub M, Bouacha K, Bolle B. Elaboration of AlSi10Mg casting alloys using directional solidification processing. Int. J. Miner. Metall. Mater., 2015, 22(5): 509.

[21]

Krishnakumar M, Mohnbabu A, Saravanan R. Impact of surface alloying of nickel on microstructure, hardness and wear on aluminium-12% silicon alloy. Trans. Indian Inst. Met., 2019, 72(9): 2395.

[22]

Biswas P, Bhandari R, Mondal MK, Mandal D. Effect of microstructural morphology on microscale deformation behavior of Al-4.5Cu-2Mg alloy. Arch. Metall. Mater., 2018, 63(4): 1575.

[23]

Bhandari R, Biswas P, Mondal MK, Mandal D. Finite element analysis of stress-strain localization and distribution in Al-4.5Cu-2Mg alloy. Trans. Nonferrous Met. Soc. China, 2018, 28(6): 1200.

[24]

Biswas P, Mandal D, Mondal MK. Micromechanical response of Al-Mg2Si composites using approximated representative volume elements (RVEs) model. Mater. Res. Express, 2019, 6(11): 1165c6.

[25]

Z.H. Gan, H. Wu, Y. Sun, P.H. Jiang, Y. Su, C.D. Wu, and J. Liu, Super-gravity field assisted homogeneous distribution of sub-micron eutectic Si in Al-Si alloy, J. Alloy Compd., 817(2019), art. No. 152701.

[26]

X.C. Xia, Q.F. Zhao, Y.Y. Peng, P. Zhang, L.H. Liu, J. Ding, X.D. Luo, L.S. Wang, L.X. Huang, H.J. Zhang, and X.G. Chen, Precipitation behavior and mechanical performances of A356.2 alloy treated by Al-Sr-La composite refinement-modification agent, J. Alloy Compd., 181(2020), art. No. 1533703.

[27]

Kaya H, Aker A. Effect of alloying elements and growth rates on microstructure and mechanical properties in the directionally solidified Al-Si-X alloys. J. Alloys Compd., 2017, 694, 145.

[28]

Farahany S, Idris MH, Ourdjini A, Faris F, Ghandvar H. Evaluation of the effect of grain refiners on the solidification characteristics of an Sr-modified ADC12 die-casting alloy by cooling curve thermal analysis. J. Therm. Anal Calorim., 2015, 119(3): 1593.

[29]

Anasyida AS, Daud AR, Ghazali MJ. Dry sliding wear behaviour of Al-12Si-4Mg alloy with cerium addition. Mater. Des., 2010, 31(1): 365.

[30]

Easton MA, Qian MA, StJohn DH. Jurgen Buschow KH. Grain refinement in alloys: Novel approaches. Encyclopedia of Materials: Science and Technology, 2011, Amsterdam; New York, Elsevier

[31]

Jia YW, Wang DH, Fu YN, Dong AP, Zhu GL, Shu D, Sun BD. In situ investigation of the heterogeneous nucleation sequence in Al-15 weight percent Cu alloy inoculated by Al-Ti-B. Metall. Mater Trans., A, 2019, 50(4): 1795.

[32]

Chen ZN, Kang HJ, Fan GH, Li JH, Lu YP, Jie JC, Zhang YB, Li TJ, Jian XG, Wang TM. Grain refinement of hypoeutectic Al-Si alloys with B. Acta Mater., 2016, 120, 168.

[33]

Kori SA, Auradi V, Murty BS, Chakraborty M. Poisoning and fading mechanism of grain refinement in Al-7Si alloy. Mater. Forum, 2005, 29, 387.

[34]

Srirangam P, Kramer MJ, Shankar S. Effect of strontium on liquid structure of Al-Si hypoeutectic alloys using high-energy X-ray diffraction. Acta Mater., 2011, 59(2): 50.

[35]

Han YF, Li K, Wang J, Shu D, Sun BD. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminium. Mater. Sci. Eng. A, 2005, 405(1–2): 306.

[36]

Tang P, Li WF, Wang K, Du J, Chen XY, Zhao YJ, Li WZ. Effect of Al-Ti-C master alloy addition on microstructures and mechanical properties of cast eutectic Al-Si-Fe-Cu alloy. Mater. Des., 2017, 115, 147.

[37]

Vinod Kumar GS, Murty BS, Chakraborty M. Grain refinement response of LM25 alloy towards Al-Ti-C and Al-Ti-B grain refiners. J. Alloys Compd., 2009, 472(1–2): 112.

[38]

Li Y, Gu QF, Luo Q, Pang YP, Chen SL, Chou KC, Wang XL, Li Q. Thermodynamic investigation on phase formation in the Al-Si richregion of Al-Si-Ti system. Mater. Des., 2016, 102, 78.

[39]

Murty BS, Kori SA, Chakraborty M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev., 2002, 47(1): 3.

[40]

Srirangama P, Chattopadhyay S, Bhattachary A, Nag S, Kaduk J, Shankar S, Banerjee R, Shibata T. Probing the local atomic structure of Sr-modified Al-Si alloys. Acta Mater., 2014, 65, 185.

[41]

Li GR, Wang HM, Zhao YT, Chen DB, Chen G, Cheng XN. Microstructure of in situ Al3Ti/6351Al composites fabricated with electromagnetic stirring and fluxes. Trans. Nonferrous Met. Soc. China, 2010, 20(4): 577.

[42]

Mondal MK, Biswas K, Maity J. Microstructural characterisation of novel 6351 Al-Al4SiC4 in-situ composite. Mater. Sci. Technol., 2013, 29(11): 1394.

[43]

Bunn AM, Schumacher P, Kearns MA, Boothroyd CB, Greer AL. Grain refinement by Al-Ti-B alloys in aluminium melts: a study of the mechanisms of poisoning by Zirconium. Mater. Sci. Technol., 1999, 15(10): 1115.

[44]

Chen Y, Pan Y, Lu T, Tao SW, Wu JL. Effects of combinative addition of lanthanum and boron on grain refinement of Al-Si casting alloys. Mater. Des., 2014, 64, 423.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/