Electrochemical derusting in molten Na2CO3-K2CO3

Dong-yang Zhang , Xue Ma , Hong-wei Xie , Xiang Chen , Jia-kang Qu , Qiu-shi Song , Hua-yi Yin

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 637 -643.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 637 -643. DOI: 10.1007/s12613-020-2068-2
Article

Electrochemical derusting in molten Na2CO3-K2CO3

Author information +
History +
PDF

Abstract

The formation of a rust layer on iron and steels surfaces accelerates their degradation and eventually causes material failure. In addition to fabricating a protective layer or using a sacrificial anode, repairing or removing the rust layer is another way to reduce the corrosion rate and extend the lifespans of iron and steels. Herein, an electrochemical healing approach was employed to repair the rust layer in molten Na2CO3-K2CO3. The rusty layers on iron rods and screws were electrochemically converted to iron in only several minutes and a metallic luster appeared. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses showed that the structures of the rust layer after healing were slightly porous and the oxygen content reached a very low level. Thus, high-temperature molten-salt electrolysis may be an effective way to metalize iron rust of various shapes and structures in a short time, and could be used in the repair of cultural relics and even preparing a three-dimensional porous structures for other applications.

Keywords

molten salt / electro-deoxidation / rust / stainless steel / derusting

Cite this article

Download citation ▾
Dong-yang Zhang, Xue Ma, Hong-wei Xie, Xiang Chen, Jia-kang Qu, Qiu-shi Song, Hua-yi Yin. Electrochemical derusting in molten Na2CO3-K2CO3. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(4): 637-643 DOI:10.1007/s12613-020-2068-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

de Beer J, Worrell E, Blok K. Future technologies for energy-efficient iron and steel making. Annu. Rev. Energy Env., 1998, 23(1): 123.

[2]

Oh SJ, Cook DC, Townsend HE. Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact., 1998, 112(1–4): 59.

[3]

Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel. Corros. Sci., 2008, 50(7): 1872.

[4]

Wang ZM, Zeng XY, Huang WL. Parameters and surface performance of laser removal of rust layer on A3 steel. Surf. Coat. Technol., 2003, 166(1): 10.

[5]

Z.L. Tang, A review of corrosion inhibitors for rust preventative fluids, Curr. Opin. Solid State Mater. Sci., 23(2019), No. 4, art. No. 100759.

[6]

V. Narayanan, R.K. Singh, and D. Marla, Laser cleaning for rust removal on mild steel: An experimental study on surface characteristics, [in] The 3rd International Conference on Design and Manufacturing Engineering, Vol. 221, 2018, Melbourne, p. 01007.

[7]

Azhari A, Schindler C, Hilbert K, Godard C, Kerscher E. Influence of waterjet peening and smoothing on the material surface and properties of stainless steel 304. Surf. Coat. Technol., 2014, 258, 1176.

[8]

Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407(6802): 361.

[9]

Abdelkader AM, Kilby KT, Cox A, Fray DJ. Voltam-metry of electro-deoxidation of solid oxides. Chem. Rev., 2013, 113(5): 2863.

[10]

Wang SL, Li YJ. Reaction mechanism of direct electro-reduction of titanium dioxide in molten calcium chloride. J. Electroanal. Chem., 2004, 571(1): 37.

[11]

Allanore A, Yin L, Sadoway DR. A new anode material for oxygen evolution in molten oxide electrolysis. Nature, 2013, 497(7449): 353.

[12]

Wang T, Gao HP, Jin XB, Chen HL, Peng JJ, Chen GZ. Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl-KCl. Electrochem. Commun., 2011, 13(12): 1492.

[13]

H.Y. Yin, B. Chung, and D.R. Sadoway, Electrolysis of a molten semiconductor, Nat. Commun., 7(2016), art. No. 12584.

[14]

Qu JK, Xie HW, Song QS, Ning ZQ, Zhao HJ, Yin HY. Electrochemical desulfurization of solid copper sulfides in strongly alkaline solutions. Electrochem. Commun., 2018, 92, 14.

[15]

Jiao SQ, Zhu HM. Novel metallurgical process for titanium production. J. Mater. Res., 2006, 21(9): 2172.

[16]

Suzuki RO, Aizawa M, Ono K. Calcium-deoxidation of niobium and titanium in Ca-saturated CaCl2 molten salt. J. Alloys Compd., 1999, 288(1–2): 173.

[17]

Hu D, Dolganov A, Ma MC, Bhattacharya B, Bishop MT, Chen GZ. Development of the Fray-Farthing-Chen cam-bridge process: towards the sustainable production of titanium and its alloys. JOM, 2018, 70(2): 129.

[18]

Xie HW, Zhao HJ, Song QS, Ning ZQ, Qu JK, Yin HY. Anodic gases generated on a carbon electrode in oxide-ion containing molten CaCl2 for the electro-deoxidation process. J. Electrochem. Soc, 2018, 165(14): E759.

[19]

Wang DH, Gmitter AJ, Sadoway DR. Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide. J. Electrochem. Soc., 2011, 158(6): E51.

[20]

Siambun NJ, Mohamed H, Hu D, Jewell D, Beng YK, Chen GZ. Utilisation of carbon dioxide for electro-carburisa-tion of mild steel in molten carbonate salts. J. Electrochem. Soc., 2011, 158(11): H1117.

[21]

Xiao W, Jin XB, Deng Y, Wang DH, Chen GZ. Three-phase interlines electrochemically driven into insulator compounds: A penetration model and its verification by electrore-duction of solid AgCl. Chem. Eur. J., 2007, 13(2): 604.

[22]

Xiao W, Jin XB, Deng Y, Wang DH, Chen GZ. Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry. J. Electroanal. Chem., 2010, 639(1–2): 130.

[23]

Xiao W, Jin XB, Deng Y, Wang DH, Hu XH, Chen GZ. Electrochemically driven three-phase interlines into insulator compounds: Electroreduction of solid SiO2 in molten CaCl2. Chem. Phys. Chem., 2006, 7(8): 1750.

[24]

Gordo E, Chen GZ, Fray DJ. Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts. Electrochim. Acta, 2004, 49(13): 2195.

[25]

Xiao W, Wang DH. The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem. Soc. Rev., 2014, 43(10): 3215.

[26]

Cheng XH, Fan L, Yin HY, Liu H, Du KF, Wang DH. High-temperature oxidation behavior of Ni-11Fe-10Cu alloy: Growth of a protective oxide scale. Corros. Sci., 2016, 112, 54.

[27]

Cheng XH, Yin HY, Wang DH. Rearrangement of oxide scale on Ni-11Fe-10Cu alloy under anodic polarization in molten Na2CO3-K2CO3. Corros. Sci., 2018, 141, 168.

[28]

Yin HY, Tang DY, Zhu D, Zhang Y, Wang DH. Production of iron and oxygen in molten K2CO3-Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode. Electrochem. Commun., 2011, 13(12): 1521.

[29]

Tang DY, Zheng KY, Yin HY, Mao XH, Sadoway DR, Wang DH. Electrochemical growth of a corrosion-resistant multi-layer scale to enable an oxygen-evolution inert anode in molten carbonate. Electrochim. Acta, 2018, 279, 250.

[30]

Cheng XH, Tang DD, Zhu H, Wang DH. Cobalt powder production by electro-reduction of Co3O4 granules in molten carbonates using an inert anode. J. Electrochem. Soc., 2015, 162(6): E68.

[31]

Tang DY, Yin HY, Xiao W, Zhu H, Mao XH, Wang DH. Reduction mechanism and carbon content investigation for electrolytic production of iron from solid Fe2O3 in molten K2CO3-Na2CO3 using an inert anode. J. Electroanal. Chem., 2013, 689, 109.

[32]

Tang DY, Yin HY, Cheng XH, Xiao W, Wang DH. Green production of nickel powder by electroreduction of NiO in molten Na2CO3-K2CO3. Int. J. Hydrogen Energy, 2016, 41(41): 18699.

[33]

Allanore A, Lavelaine H, Valentin G, Birat JP, Lapicque FM. Iron metal production by bulk electrolysis of iron ore particles in aqueous media. J. Electrochem. Soc., 2008, 155(9): E125.

[34]

Cox A, Fray DJ. Electrolytic formation of iron from haematite in molten sodium hydroxide. Ironmaking Steelmaking, 2008, 35(8): 561.

[35]

Wang DH, Jin XB, Chen GZ. Solid state reactions: An electrochemical approach in molten salts. Annu. Rep. Prog. Chem. Sect. C, 2008, 104, 189.

[36]

Lantelme F, Groult H. Molten Salts Chemistry: From Lab to Applications, 2013, Amsterdam, Elsevier vol. 28

[37]

Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, García-Martínez J. Mesoporous materials for clean energy technologies. Chem. Soc. Rev., 2014, 43(22): 7681.

[38]

Wang MY, Yu XT, Wang Z, Gong XZ, Guo ZC, Dai L. Hierarchically 3D porous films electrochemically constructed on gas-liquid-solid three-phase interface for energy application. J. Mater. Chem. A, 2017, 5(20): 9488.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/