A review of carbon dioxide disposal technology in the converter steelmaking process
Rong Zhu , Bao-chen Han , Kai Dong , Guang-sheng Wei
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (11) : 1421 -1429.
A review of carbon dioxide disposal technology in the converter steelmaking process
In last decade, the utilization of CO2 resources in steelmaking has achieved certain metallurgical effects and the technology is maturing. In this review, we summarized the basic reaction theory of CO2, the CO2 conversion, and the change of energy-consumption when CO2 was introduced in converter steelmaking process. In the CO2-O2 mixed injection (COMI) process, the CO2 conversion ratio can be obtained as high as 80% or more with a control of the CO2 ratio in mixture gas and the flow rate of CO2, and the energy is saving and even the energy consumption can be reduced by 145.65 MJ/t under certain operations. In addition, a complete route of CO2 disposal technology is proposed combining the comparatively mature technologies of CO2 capture, CO2 compression, and liquid CO2 storage to improve the technology of CO2 utilization. The results are expected to form a large-scale, highly efficient, and valuable method to dispose of CO2.
CO2 utilization / carbon dioxide / steelmaking / enhanced stirring / temperature control
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
J.R. Paules, Ladle stirring and stream shrouding with CO2 at Armco’s Midwestern Steel Division, [in] Proceedings of the the 70th Steelmaking Conference, Pittsburgh, 1987, p. 129. |
| [8] |
|
| [9] |
P. Blostein, P. Patten, D. Gortan, and K. Stephens, CO2 Stirring in the converter at BHP—Whyalla, [in] Proceedings of the 73th Steelmaking Conference Proceedings, Detroit, 1990, p. 315. |
| [10] |
T. Bruce, F. Weisang, M. Allibert and R. Fruehan, Effects of CO2 Stirring in a Ladle, [in] Proceedings of the 45th Electric Furnace Conference, Chicago, 1987, p. 293. |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
S. Hornby-Anderson and D. Urban, Cost and quality effectiveness of carbon dioxide in steel mills, [in] Proceedings of the 47th Electric Furnace Conference Proceedings (Iron and Steel Society Inc.), United States, 1989, p. 125. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
R. Zhu, C. Yi, B.Y. Chen, C.R. Wang, and J.X. Ke, Inner circulation research of steelmaking dust by COMI steelmaking process, Energy Metall. Ind., 2010, No. 1, p. 48. |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
M. Lu, R. Zhu, X.R. Bi, N. Wei, C.R. Wang, and J.X. Ke, Fundamental research on dephosphorization of BOF by COMI steelmaking process, Iron Steel, 2011, No. 8, p. 31. |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
H.J. Wang, N. Viswanathan, and S. Seetharaman, Oxidation kinetics of Fe-Cr and Fe-V liquid alloys under controlled oxygen pressures, [in] TMS Annual Meeting and Exhibition, Seattle, 2010, p. 215. |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
/
| 〈 |
|
〉 |