A review of carbon dioxide disposal technology in the converter steelmaking process

Rong Zhu , Bao-chen Han , Kai Dong , Guang-sheng Wei

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (11) : 1421 -1429.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (11) : 1421 -1429. DOI: 10.1007/s12613-020-2065-5
Invited Review

A review of carbon dioxide disposal technology in the converter steelmaking process

Author information +
History +
PDF

Abstract

In last decade, the utilization of CO2 resources in steelmaking has achieved certain metallurgical effects and the technology is maturing. In this review, we summarized the basic reaction theory of CO2, the CO2 conversion, and the change of energy-consumption when CO2 was introduced in converter steelmaking process. In the CO2-O2 mixed injection (COMI) process, the CO2 conversion ratio can be obtained as high as 80% or more with a control of the CO2 ratio in mixture gas and the flow rate of CO2, and the energy is saving and even the energy consumption can be reduced by 145.65 MJ/t under certain operations. In addition, a complete route of CO2 disposal technology is proposed combining the comparatively mature technologies of CO2 capture, CO2 compression, and liquid CO2 storage to improve the technology of CO2 utilization. The results are expected to form a large-scale, highly efficient, and valuable method to dispose of CO2.

Keywords

CO2 utilization / carbon dioxide / steelmaking / enhanced stirring / temperature control

Cite this article

Download citation ▾
Rong Zhu, Bao-chen Han, Kai Dong, Guang-sheng Wei. A review of carbon dioxide disposal technology in the converter steelmaking process. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(11): 1421-1429 DOI:10.1007/s12613-020-2065-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Niiri Y, Ito K, Sano K. On the rates of decarburization and oxidation of molten iron alloys with CO2-Ar atmosphere. Tetsu-to-Hagane, 1969, 55(6): 437.

[2]

Nomura H, Mori K. Kinetics of decarburization of liquid iron by Ar-CO2 gas mixture. Tetsu-to-Hagane, 1972, 58(12): 1603.

[3]

Sain DR, Belton GR. The influence of sulfur on interfacial reaction kinetics in the decarburization of liquid iron by carbon dioxide. Metall. Trans. B, 1978, 9(3): 403.

[4]

Sain DR, Belton GR. Interfacial reaction kinetics in the decarburization of liquid iron by carbon dioxide. Metall. Trans. B, 1976, 7(2): 235.

[5]

Jin GL. Application of N2-CO2 bottom-blowing LD converter. Steelmaking, 1985, 1(Z1): 96.

[6]

Mannion FJ, Fruehan RJ. Decarburization kinetics of liquid Fe-Csat alloys by CO2. Metall. Mater. Trans. B, 1989, 20(6): 853.

[7]

J.R. Paules, Ladle stirring and stream shrouding with CO2 at Armco’s Midwestern Steel Division, [in] Proceedings of the the 70th Steelmaking Conference, Pittsburgh, 1987, p. 129.

[8]

Henrion R, Schleimer F, Denier G, Roederer C. Inert gas stirring in a BOF. Iron Steelmaker, 1984, 8, 11.

[9]

P. Blostein, P. Patten, D. Gortan, and K. Stephens, CO2 Stirring in the converter at BHP—Whyalla, [in] Proceedings of the 73th Steelmaking Conference Proceedings, Detroit, 1990, p. 315.

[10]

T. Bruce, F. Weisang, M. Allibert and R. Fruehan, Effects of CO2 Stirring in a Ladle, [in] Proceedings of the 45th Electric Furnace Conference, Chicago, 1987, p. 293.

[11]

Wang SL. Metallurgical behaviors of bottom-blowing gas in combined blown converter. Steelmaking, 1986, 2(4): 24.

[12]

Wang SL. Gas supply model of combined CO2 bottom-blown converter. Steelmaking, 1989, 4(1): 1.

[13]

He P, Deng KW. Study on stirring energy in a converter with bottom blowing CO2. Eng. Chem. Metall., 1989, 10(3): 89.

[14]

Guo MX, Chen XW. Action mechanism of bottom-blown CO2 in the bath of combined-blown converter. J. Iron Steel Res., 1993, 5(1): 9.

[15]

Li CB, Han Y. The application of the combined blowing technique with CO2 bottom blowing to the converters of Anshan Iron and Steel Company. Steelmaking, 1996, 11(4): 19.

[16]

S. Hornby-Anderson and D. Urban, Cost and quality effectiveness of carbon dioxide in steel mills, [in] Proceedings of the 47th Electric Furnace Conference Proceedings (Iron and Steel Society Inc.), United States, 1989, p. 125.

[17]

Jin RJ, Zhu R, Feng LX, Yin ZJ. Experimental study of CO2-O2 mixed blowing in steelmaking. J. Univ. Sci. Technol. Beijing, 2007, 29(S1): 77.

[18]

Yin ZJ, Zhu R, Yi C, Chen BY, Wang CY, Ke JX. Fundamental research on controlling BOF dust by COMI steelmaking process. Iron Steel, 2009, 44(10): 92.

[19]

Yi C, Zhu R, Chen BY, Wang CR, Ke JX. Experimental research on reducing the dust of BOF in CO2 and O2 mixed blowing steelmaking process. ISIJ Int., 2009, 49(11): 1694.

[20]

Zhu R, Bi XR, Lv M, Liu RZ, Bao X. Research on steelmaking dust based on difference of Mn, Fe and Mo vapor pressure. Adv. Mater. Res., 2011, 284–286, 1216.

[21]

Yi C, Zhu R, Yin Z, Hou N, Chen B, Wang CR, Ke JX. Experimental research of COMI steelmaking process based on 30t converter. Chin. J. Process Eng., 2009, 9, 222.

[22]

Ning XJ, Yin ZJ, Yi C, Zhu R, Dong K. Experimental research on dust reduction in steelmaking by CO2. Steelmaking, 2009, 25(5): 32.

[23]

R. Zhu, C. Yi, B.Y. Chen, C.R. Wang, and J.X. Ke, Inner circulation research of steelmaking dust by COMI steelmaking process, Energy Metall. Ind., 2010, No. 1, p. 48.

[24]

Bi XR, Liu RZ, Zhu R, Ming L. Research on mechanism of dust generation in converter. Ind. Heating, 2010, 39(6): 13.

[25]

Zhang W, Li ZZ, Zhu R, Liu RZ. Experiment study of CO2 blowing in steelmaking process. Ind. Heating, 2015, 44(2): 41.

[26]

Lv M, Zhu R, Wei XY, Wang H, Bi XR. Research on top and bottom mixed blowing CO2 in converter steelmaking process. Steel Res. Int., 2012, 83(1): 11.

[27]

M. Lu, R. Zhu, X.R. Bi, N. Wei, C.R. Wang, and J.X. Ke, Fundamental research on dephosphorization of BOF by COMI steelmaking process, Iron Steel, 2011, No. 8, p. 31.

[28]

Li H, Guo LF, Li ZQ, Sun WC, Li YQ. Research of low-carbon mode and on limestone addition instead of lime in the BOF steelmaking. J. Iron Steel Res. Int., 2010, 17(Suppl. 2): 23.

[29]

Li YQ, Li H, Guo LF, Feng J, Song WC. The influence of decomposition and slagging of limestone to temperature in converter. Adv. Mater. Res., 2012, 490–495, 3836.

[30]

Li H, Feng J, Li YQ, Guo LF, Song WC. Thermodynamic analysis of limestone decomposition and CO2 oxidation effect in the early stage of BOF steelmaking. J. Univ. Sci. Technol. Beijing, 2011, 33(S1): 83.

[31]

Wang HJ, Viswanathan NN, Ballal NB, Seetharaman S. Modeling of reactions between gas bubble and molten metal bath-experimental validation in the case of decarburization of Fe-Cr-C melts. High Temp. Mater. Processes, 2009, 28(6): 407.

[32]

Wang HJ, Teng LD, Seetharaman S. Investigation of the oxidation kinetics of Fe-Cr and Fe-Cr-C melts under controlled oxygen partial pressures. Metall. Mater. Trans. B, 2012, 43(6): 1476.

[33]

H.J. Wang, N. Viswanathan, and S. Seetharaman, Oxidation kinetics of Fe-Cr and Fe-V liquid alloys under controlled oxygen pressures, [in] TMS Annual Meeting and Exhibition, Seattle, 2010, p. 215.

[34]

Wang HJ, Nzotta MM, Teng LD, Seetharaman S. Decarburization of ferrochrome and high alloy steels with optimized gas and slag phases towards improved Cr retention. J. Min. Metall., Sect. B, 2013, 49(2): 175.

[35]

Wei GS, Zhu R, Wu XT, Dong K, Yang LZ, Liu RZ. Technological innovations of carbon dioxide injection in EAF-LF steelmaking. JOM, 2018, 70(6): 969.

[36]

Wei GS, Zhu R, Wu XT, Yang LZ, Dong K, Cheng T, Tang TP. Study on the fluid flow characteristics of coherent jets with CO2 and O2 mixed injection in electric arc furnace steelmaking processes. Metall. Mater. Trans. B, 2018, 49(3): 1405.

[37]

Han BC, Zhu R, Zhu YQ, Liu RZ, Wu WH, Li Q, Wei GS. Research on selective oxidation of carbon and aluminum with introduction of CO2 in RH refining of low-carbon steel process. Metall. Mater. Trans. B, 2018, 49(6): 3544.

[38]

Gu YL, Wang HJ, Zhu R, Wang J, Lv M, Wang H. Study on experiment and mechanism of bottom blowing CO2 during the LF refining process. Steel Res. Int., 2014, 85(4): 589.

[39]

Han BC, Wei GS, Zhu R, Wu WH, Jiang JJ, Feng C, Dong JF, Hu SY, Liu RZ. Utilization of carbon dioxide injection in BOF-RH steelmaking process. J. CO2 Util., 2019, 34, 53.

[40]

Wei G, Li ZT, Li ZL, Gao QJ, Shen FM. Thermodynamic analysis and experimental study on reaction of CO2 gas with hot metal. J. Iron Steel Res. Int., 2016, 23(2): 98.

[41]

Ohno T, Chiba K, Ono A, Saeki M, Yamauchi M, Kanemeoto M. On-line analysis for manganese in molten iron by measurement of emission spectrum at hotspot during oxygen blowing. Tetsu-to-Hagane, 1991, 77(6): 805.

[42]

Lv M. Research on Reducing Steelmaking Dust and Improving Dephosphorization by Carbon Dioxide in BOF Steelmaking Process, 2014, Beijing, University of Science and Technology Beijing [Dissertation]

[43]

Wang HJ, Teng LD, Zhang JY, Seetharaman S. Oxidation of Fe-V melts under CO2-O2 gas mixtures. Metall. Mater. Trans. B, 2010, 41(5): 1042.

[44]

Du WT, Wang Y, Liang XP. System assessment of carbon dioxide used as gas oxidant and coolant in vanadium-extraction converter. JOM, 2017, 69(10): 1785.

[45]

Du WT, Jiang Q, Chen Z, Liang XP, Wang Y. Experimental characterization of CO2 and CaCO3 used in a pyrometallurgical vanadium-extraction process. JOM, 2019, 71(12): 4925.

[46]

Grabke HJ. Kinetik der sauerstoffübertragung aus CO2 an die oberfläche von metallen. Ber. Bunsen Ges. Phys. Chem., 1967, 71(9–10): 1067.

[47]

Grabke HJ. Kinetik der sauerstoffübertragung aus CO2 an die oberfläche von oxyden. Ber. Bunsen Ges. Phys. Chem., 1965, 69(1): 48.

[48]

Grabke HJ. Zur kinetik der reaktionen von graphit mit CO2-CO- und H2O-H2- Gemischen. Ber. Bunsen Ges. Phys. Chem., 1966, 70(6): 664.

[49]

Cramb A, Belton G. The interfacial kinetics of the reaction of CO2 with liquid nickel. Metall. Trans. B, 1984, 15(4): 655.

[50]

Cramb AW, Graham WR, Belton GR. The interfacial kinetics of the reaction of CO2 with nickel. Part I: The 14CO2-CO exchange reaction and the influence of sulfur. Metall. Trans. B, 1978, 9(4): 623.

[51]

Cramb AW, Belton GR. Studies of the interfacial kinetics of the reaction of CO2 with liquid iron by the 14CO2-CO isotope exchange reaction. Metall. Trans. B, 1981, 12(4): 699.

[52]

Yan HY, Hu XJ, Zhang ZL, Hou XM, Chou KC. Oxidation kinetics of iron and CO2-O2 by using gas mass spectrometry method. Chin. J. Eng., 2015, 37(3): 281.

[53]

Yan HY, Hu XJ, Luo C, Li CX, Zhu R, Zhou GZ. Decarburization of CO2-O2 in liquid steel by gas-phase mass spectrometry. Chem. Ind. Eng. Prog., 2018, 37(12): 4572.

[54]

Yan HY. Study on the Kinetics of Typical Metallurgical Reactions by Gases Online Mass Spectrometry Analysis Technique, 2015, Beijing, University of Science and Technology Beijing [Dissertation]

[55]

Zhu R. Theory and Practice of CO2 Utilization in Steelmaking, 2019, Beijing, Science Press, 91.

[56]

Wang XL. Research on Steelmaking Technology of 300 ton Converter by Blowing Carbon Dioxide, 2018, Beijing, University of Science and Technology Beijing [Dissertation]

[57]

Li ZZ. Investigation on Fundamental Theory of CO2 Applied in Steelmaking Process, 2018, Beijing, University of Science and Technology Beijing [Dissertation]

[58]

Wang Y, Zhao L, Otto A, Robinius M, Stolten D. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia, 2017, 114, 650.

[59]

Guandalini G, Romano MC, Ho M, Wiley D, Rubin ES, Abanades JC. A sequential approach for the economic evaluation of new CO2 capture technologies for power plants. Int. J. Greenhouse Gas Control, 2019, 84, 219.

[60]

Gardarsdottir SO, De Lena E, Romano M, Roussanaly S, Voldsund M, Pérez-Calvo JF, Berstad D, Fu C, Anantharaman R, Sutter D, Gazzani M, Mazzotti M, Cinti G. Comparison of technologies for CO2 capture from cement production—Part 2: Cost analysis. Energies, 2019, 12(3): 542.

[61]

Zhao B, Liu FZ, Cui Z, Liu CJ, Yue HR, Tang SY, Liu YY, Lu HF, Liang B. Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant: Process improvement. Appl. Energy, 2017, 185(Part 1): 362.

[62]

Shriver DF, Sailor MJ. Transformations of carbon monoxide and related ligands on metal ensembles. Acc. Chem. Res., 1988, 21(10): 374.

[63]

Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A. Study of Pt-promoted cobalt CO hydrogenation catalysts. J. Catal., 1995, 156(1): 85.

[64]

Grabow LC, Mavrikakis M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal., 2011, 1(4): 365.

[65]

Hindermann JP, Hutchings GJ, Kiennemann A. Mechanistic aspects of the formation of hydrocarbons and alcohols from CO hydrogenation. Catal. Rev. Sci. Eng., 1993, 35(1): 1.

[66]

Athariboroujeny M, Raub A, Iablokov V, Chenakin S, Kovarik L, Kruse N. Competing mechanisms in CO hydrogenation over Co-MnOx catalysts. ACS Catal., 2019, 9(6): 5603.

[67]

Liu JW, Hibbitts D, Iglesia E. Dense CO adlayers as enablers of CO hydrogenation turnovers on Ru surfaces. J. Am. Chem. Soc., 2017, 139(34): 11789.

[68]

Xiang YZ, Kruse N. Tuning the catalytic CO hydrogenation to straight-and long-chain aldehydes/alcohols and olefins/paraffins. Nat. Commun., 2016, 7(1): 13058.

[69]

Ashwell AP, Lin W, Hofman MS, Yang YX, Ratner MA, Koel BE, Schatz GC. Hydrogenation of CO to methanol on Ni(110) through subsurface hydrogen. J. Am. Chem. Soc., 2017, 139(48): 17582.

[70]

Xu T, Ning XJ, Wang GW, Liang W, Zhang JL, Li YJ, Wang HY, Jiang CH. Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal. Int. J. Miner. Metall. Mater., 2018, 25(12): 1412.

[71]

Li Y, Zhao LH, Wang YK, Cang DQ. Effects of Fe2O3 on the properties of ceramics from steel slag. Int. J. Miner. Metall. Mater., 2018, 25(4): 413.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/