Surface modifications of biometallic commercially pure Ti and Ti-13Nb-13Zr alloy by picosecond Nd:YAG laser

Slađana Laketić , Marko Rakin , Miloš Momčilović , Jovan Ciganović , Đorđe Veljović , Ivana Cvijović-Alagić

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (2) : 285 -295.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (2) : 285 -295. DOI: 10.1007/s12613-020-2061-9
Article

Surface modifications of biometallic commercially pure Ti and Ti-13Nb-13Zr alloy by picosecond Nd:YAG laser

Author information +
History +
PDF

Abstract

The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti-13Nb-13Zr alloy in air and argon atmospheres were studied under different laser output energy values. During the interaction of laser irradiation with the investigated materials, a part of the energy was absorbed on the target surface, influencing surface modifications. Laser beam interaction with the target surface resulted in various morphological alterations, resulting in crater formation and the presence of microcracks and hydrodynamic structures. Moreover, different chemical changes were induced on the target materials’ surfaces, resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption. Given the high energy absorption at the site of interaction, the dimensions of the surface damaged area increased. Consequently, surface roughness increased. The appearance of surface oxides also led to the increased material hardness in the surface-modified area. Observed chemical and morphological changes were pronounced after laser irradiation of the Ti-13Nb-13Zr alloy surface.

Keywords

commercially pure titanium / Ti-13Nb-13Zr alloy / surface modification / Nd:YAG laser / laser-induced damage / hard oxidized surface

Cite this article

Download citation ▾
Slađana Laketić, Marko Rakin, Miloš Momčilović, Jovan Ciganović, Đorđe Veljović, Ivana Cvijović-Alagić. Surface modifications of biometallic commercially pure Ti and Ti-13Nb-13Zr alloy by picosecond Nd:YAG laser. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(2): 285-295 DOI:10.1007/s12613-020-2061-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ivanova EP, Bazaka K, Crawford RJ. New Functional Biomaterials for Medicine and Healthcare, 2014, Cambridge, Woodhead Publishing, 121.

[2]

Chen QZ, Thouas GA. Metallic implant biomaterials. Mater. Sci. Eng. R, 2015, 87, 1.

[3]

Long M, Rack HJ. Titanium alloys in total joint replacement—A materials science perspective. Biomaterials, 1998, 19(18): 1621.

[4]

Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants — A review. Prog. Mater. Sci., 2009, 54(3): 397.

[5]

Cvijović-Alagić I, Cvijović Z, Mitrović S, Panić V, Rakin M. Wear and corrosion behaviour of Ti-13Nb-13Zr and Ti-6Al—4V alloys in simulated physiological solution. Corros. Sci., 2011, 53(2): 796.

[6]

Greenwood NN, Earnshaw A. Chemistry of the Elements, 1997, 2nd ed., Oxford, Butterworth-Heinemann, 954.

[7]

Joshi VA. Titanium alloys: An Atlas of Structures and Fracture Features, 2006, Boca Raton, Florida, CRC Press

[8]

Dimić I, Cvijović-Alagić I, Völker B, Hohenwarter A, Pippan R, Veljović Đ, Rakin M, Bugarski B. Microstructure and metallic ion release of pure titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion. Mater. Des., 2016, 91, 340.

[9]

Bereznai M, Pelsöczi I, Tóth Z, Turzó K, Radnai M, Bor Z, Fazekas A. Surface modifications induced by ns and subps excimer laser pulses on titanium implant material. Biomaterials, 2003, 24(23): 4197.

[10]

Hildebrand HF, Hornez JC. Helsen JA, Breme HJ. Biological response and biocompatibility. Metals as Biomaterials, 1998, Chichester, John Wiley and Sons Ltd, 265.

[11]

M. Plecko, C. Sievert, D. Andermatt, R. Frigg, P. Kronen, K. Klein, S. Stübinger, K. Nuss, A. Bürki, S. Ferguson, U. Stoeckle, and B. von Rechenberg, Osseointegration and biocompatibility of different metal implants — A comparative experimental investigation in sheep, BMC Musculoskelet. Disord., 13(2012), art. No. 32.

[12]

Cvijović-Alagić I. Damage and Fracture Resistance of Titanium Based Alloys for Medical Application, 2013, Belgrade, University of Belgrade Dissertation]

[13]

Cvijović-Alagić I, Cvijović Z, Bajat J, Rakin M. Composition and processing effects on the electrochemical characteristics of biomedical titanium alloys. Corros. Sci., 2014, 83, 245.

[14]

Dimić I, Cvijović-Alagić I, Hohenwarter A, Pippan R, Kojić V, Bajat J, Rakin M. Electrochemical and biocompatibility examinations of high pressure torsion processed titanium and Ti-13Nb-13Zr alloy. J. Biomed. Mater. Res. Part B, 2018, 106(3): 1097.

[15]

Nouri A, Wen C. Wen C. 1 — Introduction to surface coating and modification for metallic biomaterials. Surface Coating and Modification of Metallic Biomaterials, 2015, Cambridge, Wood-head Publishing, 3.

[16]

Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R, 2004, 47(3–4): 49.

[17]

Shah FA, Grandfield K, Palmquist A. Vilar R. Laser surface modification and the tissue-implant interface. Laser Surface Modification of Biomaterials: Techniques and Applications, 2016, Duxford, Woodhead Publishing, 253.

[18]

Brown MS, Arnold CB. Sugioka K, Meunier M, Piqué A. Fundamentals of laser-material interaction and application to multiscale surface modification. Lasser Precision Microfabrication, 2010, Berlin, Heidelberg, Springer, 91.

[19]

Milovanović DS. Interaction of Picosecond and Nanosecond Pulsed Laser Radiation on Ti6Al4V Alloy Surface, 2013, Belgrade, University of Belgrade [Dissertation]

[20]

Momčilović MD. Interaction of Impulse TEA CO 2 Laser Radiation with Copper Target: Spectroscopy of Plasma and Morhological Effects, 2014, Belgrade, University of Belgrade [Dissertation]

[21]

Bäuerle D. Laser Processing and Chemistry, 2000, 3rd ed., Berlin, Heidelberg, Springer

[22]

M. von Allmen, Laser-Beam Interaction with Materials: Physical Principles and Applications, A. Mooradian, ed., Springer Series in Materials Science, Vol. 2, Springer, Berlin, Heidelberg, 1987.

[23]

Subramani K, Mathew RT. Subramani K, Ahmed W. Titanium surface modification techniques for dental implants—From microscale to nanoscale. Emerging Nanotechnologies in Dentistry: Processes, Materials and Applications, 2012, Waltham, Elsevier, 85.

[24]

Hitz B, Ewing JJ, Hecht J. Introduction to Laser Technology, 2001, 3rd ed., New York, IEEE Press

[25]

Carpene E, Höche D, Schaaf P. Schaaf P. Fundamentals of laser-material interactions. Laser Processing of Materials: Fundamentals, Applications and Developments, 2010, Berlin, Heidelberg, Springer, 21.

[26]

Mani G. Wen C. Surface properties and characterization of metallic biomaterials. Surface Coating and Modfication of Metallic Biomaterials, 2015, Cambridge, Woodhead Publishing, 61.

[27]

Peruško D, Kovač J, Petrović S, Dražić G, Mitrić M, Milosavljević M, Ciganović J. Intermixing and phase transformations in Al/Ti multilayer system induced by picosecond laser beam. Thin Solid Films, 2015, 591, 357.

[28]

Trtica M, Gakovic B, Batani D, Desai T, Panjan P, Radak B. Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm. Appl. Surf. Sci., 2006, 253(5): 2551.

[29]

György E, Mihailescu IN, Serra P, del Pino AP, Morenza JL. Single pulse Nd:YAG laser irradiation of titanium: Influence of laser intensity on surface morphology. Surf. Coat. Technol., 2002, 154(1): 63.

[30]

Milovanović DS, Petrović SM, Shulepov MA, Tarasenko VF, Radak BB, Miljanić S, Trtica MS. Titanium alloy surface modification by excimer laser irradiation. Opt. Laser Technol., 2013, 54, 419.

[31]

Milovanović DS, Radak BB, Gaković BM, Batani D, Momčilović MD, Trtica MS. Surface morphology modifications of titanium based implant induced by 40 picosecond laser pulses at 266 nm. J. Alloys Compd., 2010, 501(1): 89.

[32]

Trtica M, Batani D, Redaelli R, Limpouch J, Kmetik V, Ciganovic J, Stasic J, Gakovic B, Momcilovic M. Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum. Lasser Part. Beams, 2013, 31(1): 29.

[33]

Ciganovic J, Stasic J, Gakovic B, Momcilovic M, Milovanovic D, Bokorov M, Trtica M. Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres — Comparative study. Appl. Surf. Sci., 2012, 258(7): 2741.

[34]

I. Gnilitskyi, M. Pogorielov, R. Viter, A.M. Ferraria, A.P. Carapeto, O. Oleshko, L. Orazi, and O. Mishchenko, Cell and tissue response to nanotextured Ti6Al4V and Zr implants using highspeed femtosecond laser-induced periodic surface structures, Nanomed. Nanotechnol. Biol. Med., 21(2019), art. No. 102036.

[35]

Götz HE, Müller M, Emmel A, Holzwarth U, Erben RG, Stangl R. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomateriah, 2004, 25(18): 4057.

[36]

Zhang JR, Guan YC, Lin WT, Gu XN. Enhanced mechanical properties and biocompatibility of Mg-Gd-Ca alloy by laser surface processing. Surf. Coat. Technol., 2019, 362, 176.

[37]

Ma CP, Peng G, Nie L, Liu HF, Guan YC. Laser surface modification of Mg-Gd-Ca alloy for corrosion resistance and biocompatibility enhancement. Appl. Surf. Sci., 2018, 445, 211.

[38]

Hao L, Lawrence J, Li L. Manipulation of the osteoblast response to a Ti-6Al-4V titanium alloy using a high power diode laser. Appl. Surf. Sci., 2005, 247(1–4): 602.

[39]

Badekas H, Panagopoulos C, Economou S. Laser surface-treatment of titanium. J. Mater. Process. Technol., 1994, 44(1–2): 54.

[40]

Trtica M, Stasic J, Batani D, Benocci R, Narayanan V, Ciganovic J. Laser-assisted surface modification of Ti-implant in air and water environment. Appl. Surf. Sci., 2018, 428, 669.

[41]

Singh R, Martin M, Dahotre NB. Influence of laser surface modification on corrosion behavior of stainless steel 316L and Ti-6Al-4V in simulated biofluid. Surf. Eng., 2005, 21(4): 297.

[42]

Yue TM, Yu JK, Mei Z, Man HC. Excimer laser surface treatment of Ti-6Al-4V alloy for corrosion resistance enhancement. Mater. Lett., 2002, 52(3): 206.

[43]

Yue TM, Cheung TM, Man HC. The effects of laser surface treatment on the corrosion properties of Ti-6Al-4V alloy in Hank’s solution. J. Mater. Sci. Lett., 2000, 19, 205.

[44]

Chan CW, Lee S, Smith G, Sarri G, Ng C-H, Sharba A, Man H-C. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen. Appl. Surf. Sci., 2016, 367, 80.

[45]

Sathish S, Geetha M, Pandey ND, Richard C, Asokamani R. Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys. Mater. Sci. Eng. C, 2010, 30(3): 376.

[46]

Ciganović J. Action of Pulsed Lasers on Titanium Target: Surface Effects, 2019, Belgrade, University of Belgrade [Dissertation]

[47]

Geetha M, Singh AK, Muraleedharan K, Gogia AK, Asokamani R. Effect of thermomechanical processing on microstructure of a Ti-13Nb-13Zr alloy. J. Alloys Compd., 2001, 329(1–2): 264.

[48]

Davidson JA, Mishra AK, Kovacs P, Poggie RA. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty. Bio-Med. Mater. Eng., 1994, 4(3): 231.

[49]

Baptista CARP, Schneider SG, Taddei EB, da Silva HM. Fatigue behavior of arc melted Ti-13Nb-13Zr alloy. Int. J. Fatigue, 2004, 26(9): 967.

[50]

Robin A, Carvalho OAS, Schneider SG, Schneider S. Corrosion behavior of Ti-xNb-13Zr alloys in Ringer’s solution. Mater. Corros., 2008, 59(12): 929.

[51]

J. Ciganovic, S. Zivkovic, M. Momcilovic, J. Savovic, M. Kuzmanovic, M. Stoiljkovic, and M. Trtica, Laser-induced features at titanium implant surface in vacuum ambience, Opt. Quantum Electron., 48(2016), art. No. 133.

[52]

Brooks CR. Heat Treatment: Structure and Properties of Nonferrous Alloys, 1982, Ohio, American Society for Metals

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/