Sintering of monoclinic SrAl2Si2O8 ceramics and their Sr immobilization

Jie Luo , Xin Li , Fu-jie Zhang , Song Chen , Ding Ren

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 1057 -1062.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 1057 -1062. DOI: 10.1007/s12613-020-2056-6
Article

Sintering of monoclinic SrAl2Si2O8 ceramics and their Sr immobilization

Author information +
History +
PDF

Abstract

Monoclinic SrAl2Si2O8 ceramics for Sr immobilization were prepared by a liquid-phase sintering method. The sintering temperature, mineral phase composition, microstructure, flexural strength, bulk density, and Sr ion leaching characteristics of the SrAl2Si2O8 ceramics were investigated. A crystalline monoclinic SrAl2Si2O8 phase formed through liquid-phase sintering at 1223 K. The introduction of four flux agents (B2O3, CaO·2B2O3, SrO·2B2O3, and BaO·2B2O3) to the SrAl2Si2O8 ceramics not only reduced the densification temperature and decreased the volatilization of Sr during high-temperature sintering but also impacted the mechanical properties of the ceramics. Product consistency tests showed that the leaching concentration of Sr ions in the sample with flux agent B2O3 was the lowest, whereas that of Sr ions in the sample with flux agent BaO·2B2O3 was the highest. These results show that the leaching concentration of Sr ions depends largely on the amorphous phase in the ceramics. Meanwhile, the formation of mineral analog ceramics containing Sr is an important factor to improve Sr immobilization.

Keywords

low-temperature liquid-phase sintering / strontium immobilization / monoclinic strontium feldspar / flux agent

Cite this article

Download citation ▾
Jie Luo, Xin Li, Fu-jie Zhang, Song Chen, Ding Ren. Sintering of monoclinic SrAl2Si2O8 ceramics and their Sr immobilization. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(6): 1057-1062 DOI:10.1007/s12613-020-2056-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hijikata T, Sakata M, Miyashiro H, Kinoshita K, Higashi T, Tamai T. Development of pyrometallurgical partitioning of actinides from high-level radioactive waste using a reductive extraction step. Nucl. Technol., 1996, 115(1): 114.

[2]

Choppin GR. Actinide speciation in the environment. J. Radioanal. Nucl. Chem., 2007, 273(3): 695.

[3]

Alyapyshev MY, Babain VA, Ustynyuk YA. Recovery of minor actinides from high-level wastes: Modern trends. Russ. Chem. Rev., 2016, 85(9): 943.

[4]

Jantzen CM, Lee WE, Ojovan MI. Lee WE, Ojovan MI, Jantzen CM. Radioactive waste conditioning, immobilization, and encapsulation processes and technologies: Overview and advances. Radioactive Waste Management and Contaminated Site Clean-up: Processes, Technologies and International Experience, 2013, Cambridge, Woodhead Publishing, 171.

[5]

Forsyth RS, Werme LO. Spent fuel corrosion and dissolution. J. Nucl. Mater., 1992, 190, 3.

[6]

Donald IW, Metcalfe BL, Taylor RNJ. The immobilization of high level radioactive wastes using ceramics and glasses. J. Mater. Sci., 1997, 32(22): 5851.

[7]

Wang L, Liang TX. Ceramics for high level radioactive waste solidification. J. Adv. Ceram., 2012, 1(3): 194.

[8]

Lee WE, Ojovan MI, Stennett MC, Hyatt NC. Immobilization of radioactive waste in glasses, glass composite materials and ceramics. Adv. Appl. Ceram., 2006, 105(1): 3.

[9]

Vance ER, Begg BD, Gregg DJ. Apted MJ, Ahn J. Immobilization of high-level radioactive waste and used nuclear fuel for safe disposal in geological repository systems. Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, 2017, 2nd ed., Wood-head Publishing, Cambridge, 269.

[10]

Ferone C, Liguori B, Marocco A, Anaclerio S, Pansini M, Colella C. Monoclinic (Ba, Sr)-celsian by thermal treatment of (Ba, Sr)-exchanged zeolite A. Microporous Mesoporous Mater., 2010, 134(1–3): 65.

[11]

López-Badillo CM, López-Cuevas J, Gutiérrez-Chavarría CA, Rodríguez-Galicia JL, Pech-Canul MI. Synthesis and characterization of BaAl2Si2O8 using mechanically activated precursor mixtures containing coal fly ash. J. Eur. Ceram. Soc., 2013, 33(15–16): 3287.

[12]

Kobayashi Y, Inagaki M. Preparation of reactive Sr-celsian powders by solid-state reaction and their sintering. J. Eur. Ceram. Soc., 2004, 24(2): 399.

[13]

Liguori B, Ferone C, Anaclerio S, Colella C. Monoclinic Sr-celsian by thermal treatment of Sr-exchanged zeolite A, LTA-type framework. Solid State Ionics, 2008, 179(40): 2358.

[14]

Chen S, Zhu DG. Low-temperature sintering behaviour and properties of monoclinic-SrAl2Si2O8 ceramics prepared via an aqueous suspension milling process. J. Mater. Sci.: Mater. Electron., 2016, 27(11): 11127.

[15]

Xu ZH, Jiang Z, Wu DD, Peng X, Xu YH, Li N, Qi YJ, Li P. Immobilization of strontium-loaded zeolite A by metakaolin based-geopolymer. Ceram. Int., 2017, 43(5): 4434.

[16]

ASTM International. ASTM Standard C1285-14. Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT), 2014, West Conshohocken, ASTM International

[17]

Levin EM, McMurdie HF, Hall FP. Phase Diagrams for Ceramists, 1956, Columbus, The American Ceramic Society

[18]

Levin EM, McMurdie HF. The system BaO-B2O3. J. Am. Ceram. Soc., 1949, 32(3): 99.

[19]

Witzmann H, Herzog G. Luminescence-optical behaviour of alkaline earth borate luminophors. Z. Phys. Chem., 1964, 225, 197.

[20]

German RM, Farooq S, Kipphut CM. Kinetics of liquid sintering. Mater. Sci. Eng. A, 1988, 105–106, 215.

[21]

Chen S, Zhu DG, Cai XS. Low-temperature densification sintering and properties of monoclinic-SrAl2Si2O8 ceramics. Metall. Mater. Trans. A, 2014, 45(9): 3995.

[22]

Rajesh S, Jantunen H, Letz M, Pichler-Willhelm S. Low temperature sintering and dielectric properties of alumina-filled glass composites for LTCC applications. Int. J. Appl. Ceram. Technol., 2012, 9(1): 52.

[23]

S.D. Ross and M. Finkelstein, Barium Borate Preparation, United States Patent, Appl. 4897249, 1990.

[24]

Chen S, Zhu DG, Sun PQ, Sun HL. Sintering behavior and dielectric properties of SrB2Si2O8 ceramics. J. Mater. Sci.: Mater. Electron., 2013, 24(11): 4593.

[25]

Scholze H. Glass: Nature, Structure, and Properties, 1991, New York, Springer

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/