Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints

Hai-feng Zhang , Li Zhou , Wen-lin Li , Gao-hui Li , Yi-tang Tang , Ning Guo , Ji-cai Feng

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 699 -709.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 699 -709. DOI: 10.1007/s12613-020-2044-x
Article

Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints

Author information +
History +
PDF

Abstract

We used refill friction stir spot welding (RFSSW) to join 2-mm-thick AZ91D-H24 magnesium alloy sheets, and we investigated in detail the effect of tool plunge depth on the microstructure and fracture behavior of the joints. A sound joint surface can be obtained using plunge depths of 2.0 and 2.5 mm. Plunge depth was found to significantly affect the height of the hook, with greater plunge depths corresponding to more severe upward bending of the hook, which compromised the tensile-shear properties of the joints. The hardness reached a minimum at the thermo-mechanically affected zone due to the precipitation phases of this zone as it dissolved into the α-matrix during the welding process. The fracture modes of RFSSW joints can be divided into three types: shear fracture, plug fracture, and shear—plug fracture. Of these, the joint with a shear—plug fracture exhibited the best tensile-shear load of 6400 N.

Keywords

refill friction stir spot welding / AZ91 magnesium alloy / microstructure / fracture behavior

Cite this article

Download citation ▾
Hai-feng Zhang, Li Zhou, Wen-lin Li, Gao-hui Li, Yi-tang Tang, Ning Guo, Ji-cai Feng. Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(4): 699-709 DOI:10.1007/s12613-020-2044-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu ZW, Tang AT, Wang Q, Gao ZY, He JJ, She J, Song K, Pan FS. High strength and superior ductility of an ultra-fine grained magnesium-manganese alloy. Mater. Sci. Eng. A, 2015, 648, 202.

[2]

Huang H, Miao HW, Yuan GY, Wang ZC, Ding WJ. Fabrication of ultra-high strength magnesium alloys over 540 MPa with low alloying concentration by double continuously extrusion. J. Magnes. Alloys, 2018, 6(2): 107.

[3]

Uematsu Y, Tokaji K, Tozaki Y, Kurita T, Murata S. Effect of re-filling probe hole on tensile failure and fatigue behavior of friction stir spot welded joints in Al-Mg-Si alloy. Int. J. Fatigue, 2008, 30(10–11): 1956.

[4]

Chen GQ, Zhang S, Zhu YC, Yang CL, Shi QY. Thermo-mechanical analysis of friction stir welding: A review on recent advances. Acta Metall. Sin. Eng. Lett., 2020, 33(1): 3.

[5]

Z.K. Shen, Y.Q. Ding, and A.P. Gerlich, Advances in friction stir spot welding, Crit. Rev. Solid State Mater. Sci., (2019), p. 1.

[6]

Shen Z, Ding Y, Chen J, Shalch Amirkhiz B, Wen JZ, Fu L, Gerlich AP. Interfacial bonding mechanism in Al/coated steel dissimilar refill friction stir spot welds. J. Mater. Sci. Technol., 2019, 35(6): 1027.

[7]

C. Schilling and J. dos Santos, Method and Device for Joining at Least Two Adjoining Work Pieces by Friction Welding, US Patent, Appl. 6722556, 2004.

[8]

Zhou L, Luo LY, Zhang TP, He WX, Huang YX, Feng JC. Effect of rotation speed on microstructure and mechanical properties of refill friction stir spot welded 6061-T6 aluminum alloy. Int. J. Adv. Manuf. Technol., 2017, 92(9–12): 3425.

[9]

Ji SD, Wang Y, Li ZW, Yue YM, Chai P. Effect of tool geometry on material flow behavior of refill friction stir spot welding. Trans. Indian. Inst. Met., 2017, 70(6): 1417.

[10]

Li GH, Zhou L, Luo LY, Wu XM, Guo N. Microstructural evolution and mechanical properties of refill friction stir spot welded alclad 2A12-T4 aluminum alloy. J. Mater. Res. Technol., 2019, 8(5): 4115.

[11]

Xu ZW, Li ZW, Ji SD, Zhang LG. Refill friction stir spot welding of 5083-O aluminum alloy. J. Mater. Sci. Technol., 2018, 34(5): 878.

[12]

Zhao YQ, Liu HJ, Chen SX, Lin Z, Hou JC. Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04-T74 aluminum alloy. Mater. Des., 2014, 62, 40.

[13]

Shen ZK, Yang XQ, Yang S, Zhang ZH, Yin YH. Microstructure and mechanical properties of friction spot welded AA 6061-T4 aluminum alloy. Mater. Des., 2013, 49, 181.

[14]

Rosendo T, Tier M, Mazzaferro J, Mazzaferro C, Strohaecker TR, Dos Santos JF. Mechanical performance of AA6181 refill friction spot welds under lap shear tensile loading. Fatigue. Fract. Eng. Mater. Struct., 2015, 38(12): 1443.

[15]

Li ZW, Ji SD, Ma YN, Chai P, Yue YM, Gao SS. Fracture mechanism of refill friction stir spot-welded 2024-T4 aluminum alloy. Int. J. Adv. Manuf. Technol., 2016, 86(5–8): 1925.

[16]

Tier M, Rosendo T, Mazzaferro J, Mazzaferro C, Santos J, Strohaecker T. The weld interface for friction spot welded 5052 aluminum alloy. Int. J. Adv. Manuf. Technol., 2017, 90(1–4): 267.

[17]

Tier MD, Rosendo TS, dos Santos JF, Huber N, Mazzaferro JA, Mazzaferro CP, Strohaecker TR. The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminum welds. J. Mater. Process. Technol., 2013, 213(6): 997.

[18]

Cao JY, Wang M, Kong L, Guo LJ. Hook formation and mechanical properties of friction spot welding in alloy 6061-T6. J. Mater. Process. Technol., 2016, 230, 254.

[19]

Zhou L, Yu MR, Liu BY, Zhang ZL, Liu SW, Song XG, Zhao HY. Microstructure and mechanical properties of Al/steel dissimilar welds fabricated by friction surfacing assisted friction stir lap welding. J. Mater. Res. Technol., 2020, 9(1): 212.

[20]

Cao JY, Wang M, Kong L, Zhao HX, Chai P. Microstructure, texture and mechanical properties during refill friction stir spot welding of 6061-T6 alloy. Mater. Charact., 2017, 128, 54.

[21]

Arul SG, Miller SF, Kruger GH, Pan TY, Mallick PK, Shih AJ. Experimental study of joint performance in spot friction welding of 6111-T4 aluminium alloy. Sci. Technol. Weld. Joining, 2008, 13(7): 629.

[22]

Rosendo T, Parra B, Tier MAD, da Silva AAM, Dos Santos JF, Strohaecker TR, Alcântara NG. Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminum alloy. Mater. Des., 2011, 32(3): 1094.

[23]

Yue YM, Shi Y, Ji SD, Wang Y, Li ZW. Effect of sleeve plunge depth on microstructure and mechanical properties of refill friction stir spot welding of 2198 aluminum alloy. J. Mater. Eng. Perform., 2017, 26(10): 5064.

[24]

Campanelli LC, Suhuddin UFH, Dos Santos JF, de Alcantara NG. Parameters optimization for friction spot welding of AZ31 magnesium alloy by taguchi method. Soldagem Inspeção, 2012, 17(1): 26.

[25]

Rodriguez RI, Jordon JB, Rao HM, Badarinarayan H, Wei Y, El Kadiri H, Allison PG. Microstructure, texture, and mechanical properties of friction stir spot welded rare-earth containing ZEK100 magnesium alloy sheets. Mater. Sci. Eng. A, 2014, 618, 637.

[26]

J.B. Jordon, M.F. Horstemeyer, S.R. Daniewicz, H. Badarinarayan, and J. Grantham, Fatigue characterization and modeling of friction stir spot welds in magnesium AZ31 alloy, J. Eng. Mater. Technol., 132(2010), No. 4, art. No. 041008.

[27]

Campanelli LC, Suhuddin UF H, Antonialli AS, dos Santos JF, de Alcântara NG, Bolfarini C. Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds. J. Mater. Process. Technol., 2013, 213(4): 515.

[28]

Shen ZK, Yang XQ, Zhang ZH, Cui L, Li TL. Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Mater. Des., 2013, 44, 476.

[29]

Yang Q, Mironov S, Sato YS, Okamoto K. Material flow during friction stir spot welding. Mater. Sci. Eng. A, 2010, 527(16–17): 4389.

[30]

Chen J, Fujii H, Sun YF, Morisada Y, Kondoh K, Hashimoto K. Effect of grain size on the microstructure and mechanical properties of friction stir welded non-combustive magnesium alloys. Mater. Sci. Eng. A, 2012, 549, 176.

[31]

Surya Kiran GVV, Krishna KH, Sameer SK, Bhargavi M, Kumar BS, Rao GM, Naidubabu Y, Dumpala R, Sunil BR. Machining characteristics of fine grained AZ91 Mg alloy processed by friction stir processing. Trans. Nonferrous Met. Soc. China, 2017, 27(4): 804.

[32]

Zhang HJ, Wang M, Zhang X, Yang GX. Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum alloy. Mater. Des., 2015, 65, 559.

[33]

G.H. Li, L. Zhou, S.F. Luo, F.B. Dong, and N. Guo, Microstructure and mechanical properties of bobbin tool friction stir welded ZK60 magnesium alloy, Mater. Sci. Eng. A, 776(2020), art. No. 138953.

[34]

Ji YB, Soon K II Jeong MD, Heon PH. Preparation of AZ91D slurries for semi-solid forming using Al8(Mn, Fe)5 precipitates. J. Rare Earths, 2004, 22(Z2): 42.

[35]

Park SHC, Sato YS, Kokawa H. Microstructural evolution and its effect on Hall-Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D. J. Mater. Sci., 2003, 38(21): 4379.

[36]

Cáceres CH, Blake AH. On the strain hardening behaviour of magnesium at room temperature. Mater. Sci. Eng. A, 2007, 462(1–2): 193.

[37]

Adib H, Jeong J, Pluvinage G. Three-dimensional finite element analysis of tensile-shear spot-welded joints in tensile and compressive loading conditions. Strength Mater., 2004, 36(4): 353.

[38]

Zhou L, Li GH, Zhang RX, Zhou WL, He WX, Huang YX, Song XG. Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint. J. Alloys Compd., 2019, 775, 372.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/