Novel as-cast AlCrFe2Ni2Ti05 high-entropy alloy with excellent mechanical properties

Cheng-bin Wei , Xing-hao Du , Yi-ping Lu , Hui Jiang , Ting-ju Li , Tong-min Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1312 -1317.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1312 -1317. DOI: 10.1007/s12613-020-2042-z
Article

Novel as-cast AlCrFe2Ni2Ti05 high-entropy alloy with excellent mechanical properties

Author information +
History +
PDF

Abstract

We designed a novel Co-free AlCrFe2Ni2Ti0.5 high-entropy alloy (HEA) that features an excellent combination of strength and ductility in this study. The as-cast AlCrFe2Ni2Ti0.5 alloy showed equiaxed grains undergoing spinodal decomposition, which consisted of ultrafine-grained laminated body-centered cubic (bcc) phases and an ordered body-centered cubic (b2) phase, and some precipitates embedded in the b2 matrix. The bcc and b2 phases also feature a coherent interface. This unique structure impedes mobile dislocations and hinders the formation of cracks, thereby giving the AlCrFe2Ni2Ti0.5 HEA both high strength and plasticity. At room temperature, the as-cast AlCrFe2Ni2Ti0.5 alloy exhibited a compressive yield strength of 1714 MPa, an ultimate strength of 3307 MPa, and an elongation of 43%. These mechanical properties are superior to those of most reported HEAs.

Keywords

high-entropy alloys / mechanical properties / coherent interface / spinodal structure

Cite this article

Download citation ▾
Cheng-bin Wei, Xing-hao Du, Yi-ping Lu, Hui Jiang, Ting-ju Li, Tong-min Wang. Novel as-cast AlCrFe2Ni2Ti05 high-entropy alloy with excellent mechanical properties. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(10): 1312-1317 DOI:10.1007/s12613-020-2042-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[2]

Cantor B, Chang ITH, Knight P, Vincent AJB. Micro-structural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 2004, 375–377, 213.

[3]

Li ZM, Pradeep KG, Deng Y, Raabe D, Tasan CC. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016, 534(7606): 227.

[4]

Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345(6201): 1153.

[5]

He JY, Wang H, Huang HL, Xu XD, Chen MW, Wu Y, Liu XJ, Nieh TG, An K, Lu ZP. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater., 2016, 102, 187.

[6]

Qin G, Wang S, Chen RR, Gong X, Wang L, Su YQ, Guo JJ, Fu HZ. Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys. J. Mater. Sci. Technol., 2018, 34(2): 365.

[7]

Zhang YL, Li JG, Wang XG, Lu YP, Zhou YZ, Sun XF. The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi2.1. J. Mater. Sci. Technol., 2019, 35(5): 902.

[8]

Yang TF, Xia SQ, Guo W, Hu R, Poplawsky JD, Sha G, Fang Y, Yan ZF, Wang CX, Li CY, Zhang Y, Zinkle SJ, Wang YG. Effects of temperature on the irradiation responses of Al0.1CoCrFeNi high entropy alloy. Scripta Mater., 2018, 144, 31.

[9]

P. Ko—elj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinšek, Discovery of a superconducting high-entropy alloy, Phys. Rev. Lett., 113(2014), No. 10, art. No. 107001.

[10]

K. Jin, B.C. Sales, G.M. Stocks, G.D. Samolyuk, M. Daene, W.J. Weber, Y. Zhang, and H. Bei, Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity, Sci. Rep., 6(2016), art. No. 20159.

[11]

Varalakshmi S, Kamaraj M, Murty BS. Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng. A, 2010, 527(4–5): 1027.

[12]

Butler TM, Chaput KJ, Dietrich JR, Senkov ON. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs). J. Alloys Compd., 2017, 729, 1004.

[13]

Shi YZ, Yang B, Xie X, Brechtl J, Dahmen KA, Liaw PK. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci., 2017, 119, 33.

[14]

S. Shuang, Z.Y. Ding, D. Chung, S.Q. Shi, and Y. Yang, Corrosion resistant nanostructured eutectic high entropy alloy, Corros. Sci., 164(2020), art. No. 108315.

[15]

Varvenne C, Luque A, Curtin WA. Theory of strengthening in fcc high entropy alloys. Acta Mater., 2016, 118, 164.

[16]

Senkov ON, Jensen JK, Pilchak AL, Miracle DB, Fraser HL. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater. Des., 2018, 139, 498.

[17]

Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., 2014, 61, 1.

[18]

Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater., 2008, 10(6): 534.

[19]

S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505.

[20]

Dong Y, Lu YP, Kong JR, Zhang JJ, Li TJ. Microstructure and mechanical properties of multi-component AlCrF-eNiMox high-entropy alloys. J. Alloys Compd., 2013, 573, 96.

[21]

Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90(2007), No. 18, art. No. 181904.

[22]

Xie HB, Liu GZ, Guo JJ, Zhou M, Liu DP, Mao WQ. Effect of Ti addition on the microstructure and wear properties of AlFeCrCoCu high entropy alloy. Rare Met. Mater. Eng., 2016, 45(1): 145.

[23]

Xie HB, Liu GZ, Guo JJ. Effects of Mn, Mo, V, Ti, Zr elements on microstructure and high temperature oxidation performance of AlFeCrCoCu-X high entropy alloys. Chin. J. Non-ferrous Metals, 2015, 25(1): 103.

[24]

Yang T, Zhao YL, Tong Y, Jiao ZB, Wei J, Cai JX, Han XD, Chen D, Hu A, Kai JJ, Lu K, Liu CT. Multicom-ponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science, 2018, 362(6417): 933.

[25]

Salishchev GA, Tikhonovsky MA, Shaysultanov DG, Stepanov ND, Kuznetsov AV, Kolodiy IV, Tortika AS, Senkov ON. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J. Alloys Compd., 2014, 591, 11.

[26]

Dong Y, Gao XX, Lu YP, Wang TM, Li TJ. A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties. Mater. Lett., 2016, 169, 62.

[27]

Zhang Y, Yang X, Liaw PK. Alloy design and properties optimization of high-entropy alloys. JOM, 2012, 64(7): 830.

[28]

Ma SG, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng. A, 2012, 532, 480.

[29]

Dong Y, Zhou KY, Lu YP, Gao XX, Wang TM, Li TJ. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mater. Des., 2014, 57, 67.

[30]

Ma Y, Wang Q, Jiang BB, Li CL, Hao JM, Li XN, Dong C, Nieh TG. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Mater., 2018, 147, 213.

[31]

Wang P, Cai HN, Cheng XW. Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCu-FeCr2−x (x = 1.0, 1.2, 1.5, 1.8 mol) high entropy alloys. J. Alloys Compd., 2016, 662, 20.

[32]

Wu PH, Liu N, Yang W, Zhu ZX, Lu YP, Wang XJ. Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys. Mater. Sci. Eng. A, 2015, 642, 142.

[33]

Fu ZQ, MacDonald BE, Zhang DL, Wu BY, Chen WP, Ivanisenko J, Hahn H, Lavernia EJ. Fcc nanostructured Ti-FeCoNi alloy with multi-scale grains and enhanced plasticity. Scripta Mater., 2018, 143, 108.

[34]

Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd., 2011, 509(20): 6043.

[35]

Han ZD, Chen N, Zhao SF, Fan LW, Yang GN, Shao Y, Yao KF. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 2017, 84, 153.

[36]

Diao HH, Xie X, Sun F, Dahmen KA, Liaw PK. Gao MC, Yeh JW, Liaw PK, Zhang Y. Mechanical properties of high-entropy alloys. High-Entropy Alloys: Fundmentals and Applications, 2016, Cham, Springer, 181.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/