Effect of Ti content on microstructure and properties of Ti xZrVNb refractory high-entropy alloys

Tian-dang Huang , Shi-yu Wu , Hui Jiang , Yi-ping Lu , Tong-min Wang , Ting-ju Li

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1318 -1325.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1318 -1325. DOI: 10.1007/s12613-020-2040-1
Article

Effect of Ti content on microstructure and properties of Ti xZrVNb refractory high-entropy alloys

Author information +
History +
PDF

Abstract

This study aimed to investigate the microstructure and mechanical properties of Ti xZrVNb (x = 1, 1.5, 2) refractory high-entropy alloys at room and elevated temperatures. The TiZrVNb alloy consisted of the body-centered cubic (bcc) matrix with a small amount of V2Zr phase. The Ti1.5ZrVNb and Ti2ZrVNb alloys exhibited a single-phase bcc structure. At room temperature, the tensile ductility of the as-cast alloys increased from 3.5% to 12.3% with the increase in the Ti content. The Ti xZrVNb alloys exhibited high yield strength at 600°C, and the ultimate yield strength was more than 900 MPa. Softening occurred at 800°C, but the ultimate yield strength could still exceed 200 MPa. Moreover, the Ti xZrVNb alloys displayed low densities but high specific yield strengths (SYSs). The lowest density of Ti xZrVNb alloys was only 6.12 g/cm3, but the SYS could reach about 180 MPa·cm3·g−1, which is better than those of most reported high-entropy alloys (HEAs).

Keywords

high-entropy alloys / mechanical properties / low density / elevated temperature

Cite this article

Download citation ▾
Tian-dang Huang, Shi-yu Wu, Hui Jiang, Yi-ping Lu, Tong-min Wang, Ting-ju Li. Effect of Ti content on microstructure and properties of Ti xZrVNb refractory high-entropy alloys. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(10): 1318-1325 DOI:10.1007/s12613-020-2040-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeh J-W, Chen S-K, Lin S-J, Gan J-Y, Chin T-S, Shun T-T, Tsau C-H, Chang S-Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[2]

Cantor B, Chang ITH, Knight P, Vincent AJB. Micro-structural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 2004, 375–377, 213.

[3]

Gao MC, Yeh JW, Liaw PK, Zhang Y. High-Entropy Alloys: Fundamentals and Applications, 2016, Switzerland, Springer International Publishing, Cham

[4]

Senkov ON, Jensen JK, Pilchak AL, Miracle DB, Fraser HL. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater. Des., 2018, 139, 498.

[5]

Schuh B, Mendez-Martin F, Völker B, George EP, Clemens H, Pippan R, Hohenwarter A. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater., 2015, 96, 258.

[6]

Gao XZ, Lu YP, Zhang B, Liang NN, Wu GZ, Sha G, Liu JZ, Zhao YH. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater., 2017, 141, 59.

[7]

Ma SG, Zhang SF, Qiao JW, Wang ZH, Gao MC, Jiao ZM, Yang HJ, Zhang Y. Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridg-man solidification. Intermetallics, 2014, 54, 104.

[8]

Vaidya M, Guruvidyathri K, Murty BS. Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys. J. Alloys Compd., 2019, 774, 856.

[9]

Z.Y. Rao, X. Wang, Q.J. Wang, T. Liu, X.H. Chen, L. Wang, and X.D. Hui, Microstructure, mechanical properties, and oxidation behavior of AlxCr0.4CuFe0.4MnNi high entropy alloys, Adv. Eng. Mater., 19(2017), No. 5, art. No. 1600726.

[10]

Chuang MH, Tsai MH, Wang WR, Lin SJ, Yeh JW. Microstructure and wear behaviour of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater., 2011, 59(16): 6308.

[11]

Shang CY, Axinte E, Sun J, Li XT, Li P, Du JW, Qiao PC, Wang Y. CoCrFeNi(W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering. Mater. Des., 2017, 117, 193.

[12]

Zuo TT, Ren SB, Liaw PK, Zhang Y. Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy. Int. J. Miner. Metall. Mater., 2013, 20(6): 549.

[13]

Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater., 2017, 122, 448.

[14]

Gao MC, Carney CS, Dogan N, Jablonksi PD, Hawk JA, Alman DE. Design of refractory high-entropy alloys. JOM, 2015, 67(11): 2653.

[15]

Yao HW, Qiao JW, Hawk JA, Zhou HF, Chen MW, Gao MC. Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloys Compd., 2017, 696, 1139.

[16]

Wu YD, Cai YH, Wang T, Si JJ, Zhu J, Wang YD, Hui XD. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett., 2014, 130, 277.

[17]

Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698.

[18]

Chen H, Kauffmann A, Gorr B, Schliephake D, Seemüller C, Wagner JN, Christ H-J, Heilmaier M. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb–Mo–Cr–Ti–Al. J. Alloys Compd., 2016, 661, 206.

[19]

Senkov ON, Senkova SV, Miracle DB, Woodward C. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng. A, 2013, 565, 51.

[20]

Stepanov ND, Shaysultanov DG, Salishchev GA, Tikhonovsky MA. Structure and mechanical properties of a lightweight AlNbTiV high entropy alloy. Mater. Lett., 2015, 142, 153.

[21]

C.H. Chang, M.S. Titus, and J.W. Yeh, Oxidation behavior between 700 and 1300°C of refractory TiZrNbHfTa high-en-tropy alloys containing aluminum, Adv. Eng. Mater., 20(2018), No. 6, art. No. 1700948.

[22]

Lu YP, Huang HF, Gao XZ, Ren CL, Gao J, Zhang HZ, Zheng SJ, Jin QQ, Zhao YH, Lu CY, Wang TM, Li TJ. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J. Mater. Sci. Technol., 2019, 35(3): 369.

[23]

Senkov ON, Rao S, Chaput KJ, Woodward C. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys. Acta Mater., 2018, 151, 201.

[24]

Chen H, Kauffmann A, Seils S, Boll T, Liebscher CH, Harding I, Kumar KS, Szabô DV, Schlabach S, Kafffmann-Weiss S, Müller F, Gorr B, Christ H-J, Heilmaier M. Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta–Nb–Mo–Cr–Ti–Al. Acta Mater., 2019, 176, 123.

[25]

Senkov ON, Miracle DB, Chaput KJ, Couzinie JP. Development and exploration of refractory high entropy alloys—A review. J. Mater. Res., 2018, 33(19): 3092.

[26]

Yurchenko NY, Stepanov ND, Gridneva AO, Mishunin MV, Salishchev GA, Zherebtsov SV. Effect of Cr and Zr on phase stability of refractory Al–Cr–Nb–Ti–V–Zr high-entropy alloys. J. Alloys Compd., 2018, 757, 403.

[27]

Yurchenko NY, Stepanov ND, Zherebtsov SV, Tikhonovsky MA, Salishchev GA. Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0−1.5) high-entropy alloys. Mater. Sci. Eng. A, 2017, 704, 82.

[28]

Wang SP, Xu J. (TiZrNbTa)-Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modelling of solid solution strengthening. In-termetallics, 2018, 95, 59.

[29]

Chen J, Zhou XY, Wang WL, Liu B, Lv YK, Yang W, Xu DP, Liu Y. A review on fundamental of high entropy alloys with promising high-temperature properties. J. Alloys Compd., 2018, 760, 15.

[30]

Zou Y, Okle P, Yu H, Sumigawa T, Kitamura T, Maiti S, Steurer W, Spolenak R. Fracture properties of a refractory high-entropy alloy: In situ micro-cantilever and atom probe tomography studies. Scripta Mater., 2017, 128, 95.

[31]

Lim KR, Lee KS, Lee JS, Kim JY, Chang HJ, Na YS. Dual-phase high-entropy alloys for high-temperature structural applications. J. Alloys Compd., 2017, 728, 1235.

[32]

Lyakishev NP. Phase Diagrams of Binary Metal Systems: A Handbook, 2009, Beijing, Chemical Industry Press Q.W. Guo, trans.

[33]

Cui JX, Guo CP, Zou L, Li CR, Du ZM. Experimental investigation and thermodynamic modeling of the Ti–V–Zr system. Calphad, 2016, 55, 189.

[34]

Martienssen W, Warlimont H. Springer Handbook of Condensed Matter and Materials Data, 2005, New York, Springer Berlin Heidelberg

[35]

Matweb Material Property Data [2020-07-18]. http://www.mat-web.com/

[36]

Senkov ON, Senkova SV, Woodward C, Miracle DB. Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater., 2013, 61(5): 1545.

[37]

Qiao DX, Jiang H, Jiao WN, Lu YP, Cao ZQ, Li TJ. A novel series of refractory high-entropy alloys Ti2ZrHf0.5VNbx with high specific yield strength and good ductility. Acta Metall. Sinica, 2019, 32(8): 925.

[38]

Xu ZQ, Ma ZL, Wang M, Chen YW, Tan YD, Cheng XW. Design of novel low-density refractory high entropy alloys for high-temperature applications. Mater. Sci. Eng. A, 2019, 755, 318.

[39]

Senkov ON, Scott JM, Senkova SV, Meisenkothen F, Miracle DB, Woodward CF. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci., 2012, 47(9): 4062.

[40]

Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK. Refractory high-entropy alloys. Intermetallics, 2010, 18(9): 1758.

[41]

Huang TD, Jiang L, Zhang CL, Jiang H, Lu YP, Li TJ. Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Sci. China, Technol. Sci., 2018, 61, 117.

[42]

Tang Z, Senkov ON, Parish CM, Zhang C, Zhang F, Santodonato LJ, Wang GY, Zhao GF, Yang FQ, Liaw PK. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenisation. Mater. Sci. Eng. A, 2015, 647, 229.

[43]

Dong Y, Zhou KY, Lu YP, Gao XX, Wang TM, Li TJ. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mater. Des., 2014, 57, 67.

[44]

Kuznetsov AV, Shaysultanov DG, Stepanov ND, Salishchev GA, Senkov ON. Tensile properties of an AlCr-CuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater. Sci. Eng. A, 2012, 533, 107.

[45]

Zhu JM, Zhang HF, Fu HM, Wang AM, Li H, Hu ZQ. Microstructures and compressive properties of multicom-ponent AlCoCrCuFeNiMox alloys. J. Alloys Compd., 2010, 497(1–2): 52.

[46]

Stepanov ND, Yurchenko NY, Sokolovsky VS, Tikhonovsky MA, Salishchev GA. An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility. Mater. Lett., 2015, 161, 136.

[47]

Stepanov ND, Yurchenko NY, Panina ES, Tikhonovsky MA, Zherebtsov SV. Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater. Lett., 2017, 188, 162.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/