Non-spherical aluminum nanoparticles fabricated using picosecond laser ablation

A. Brahma Swamulu , S. Venugopal Rao , G. Krishna Podagatlapalli

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (7) : 980 -986.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (7) : 980 -986. DOI: 10.1007/s12613-020-2032-1
Article

Non-spherical aluminum nanoparticles fabricated using picosecond laser ablation

Author information +
History +
PDF

Abstract

We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ∼2 ps laser pulses at an input energy of ∼350 µJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ∼340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ∼280 nm. Additionally, coarse structures with a period of ∼700 nm were observed.

Keywords

ablation / picosecond / silver / polar / periodic surfaces / electric double layers

Cite this article

Download citation ▾
A. Brahma Swamulu, S. Venugopal Rao, G. Krishna Podagatlapalli. Non-spherical aluminum nanoparticles fabricated using picosecond laser ablation. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(7): 980-986 DOI:10.1007/s12613-020-2032-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dolgaev SI, Lyalin AA, Simakin AV, Voronov VV, Shafeev GA. Fast etching and metallization of via-holes in sapphire with the help of radiation by a copper vapor laser. Appl. Surf: Sci., 1997, 109–110, 201.

[2]

Simakin AV, Voronov VV, Kirichenko NA, Shafeev GA. Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Phys. A, 2004, 79(4–6): 1127.

[3]

Kazakevich PV, Simakin AV, Shafeev GA. Formation of periodic structures upon laser ablation of metal targets in liquids. Quantum Electron., 2005, 35(9): 831.

[4]

Kazakevich PV, Simakin AV, Voronov VV, Shafeev GA. Laser induced synthesis of nanoparticles in liquids. Appl. Surf. Sci., 2006, 252(13): 4373.

[5]

Truong SL, Levi G, Bozon-Verduraz F, Petrovskaya AV, Simakin AV, Shafeev GA. Generation of nanospikes via laser ablation of metals in liquid environment and their activity in surface-enhanced Raman scattering of organic molecules. App. Surf. Sci., 2007, 254(4): 1236.

[6]

N. Bärsch, J. Jakobi, S. Weiler, and S. Barcikowski, Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone, Nanotechnoloy, 20(2009), No. 44, art. No. 445603.

[7]

Messina E, Cavallaro E, Cacciola A, Saija R, Borghese F, Denti P, Fazio B, D’Andrea C, Gucciardi PG, Lati MA, Meneghetti M, Compagnini G, Amendola V, Marago OM. Manipulation and Raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids. J. Phys. Chem. C, 2011, 115(12): 5115.

[8]

Podagatlapalli GK, Hamad S, Sreedhar S, Tewari SP, Venugopal Rao S. Fabrication and characterization of aluminum nanostructures and nanoparticles obtained using femtosecond ablation technique. Chem. Phys. Lett., 2012, 530, 93.

[9]

G.K. Podagatlapalli, S. Hamad, S.P. Tewari, S. Sreedhar, M.D. Prasad, and S. Venugopal Rao, Silver nano-entities through ultrafast double ablation in aqueous media for surface enhanced Raman scattering and photonics applications, J. Appl. Phys., 113(2013), No. 7, art. No. 073106.

[10]

Itina TE. On nanoparticle formation by laser ablation in liquids. J. Phys. Chem. C, 2011, 115(12): 5044.

[11]

Semaltianos NG. Nanoparticles by laser ablation. Crit. Rev. Solid State Mater. Sci., 2010, 35(2): 105.

[12]

Rao S V, Podagatlapalli GK, Hamad S. Ultrafast laser ablation in liquids for nanomaterials and applications. J. Nanosci. Nanotechnol., 2014, 14(2): 1364.

[13]

Tilaki RM, Zad AI, Mahdavi SM. Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl. Phys. A, 2006, 84(1–2): 215.

[14]

Landau LD, Lifshitz EM. Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 1989, New York, Pergamon Press

[15]

B. Kumar, D. Yadav, and R.K. Thareja, Growth dynamics of nanoparticles in laser produced plasma in liquid ambient, J. Appl. Phys., 110(2011), No. 7, art. No. 074903.

[16]

S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, and G. Raciukaitis, Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow, Appl. Phys. Lett., 91(2007), No. 8, art. No. 083113.

[17]

Rebollar E, de Aldana JRV, Martín-Fabiani I, Hernández M, Rueda DR, Ezquerra TA, Domingo C, Moreno P, Castillejo M. Assessment of femtosecond laser induced periodic surface structures on polymer films. Phys. Chem. Chem. Phys, 2013, 15(27): 11287.

[18]

Reif J, Varlamova O, Varlamov S, Bestehorn M. The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation. Appl. Phys. A, 2011, 104(3): 969.

[19]

J. Bonse, A. Rosenfeld, and J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses, J. Appl. Phys., 106(2009), No. 10, art. No. 104910.

[20]

X. Jia, T.Q. Jia, N.N. Peng, D.H. Feng, S.A. Zhang, and Z.R. Sun, Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging, J. Appl. Phys., 115(2014), No. 14, art. No. 143102.

[21]

Costache F, Henyk M, Reif J. Modification of dielectric surfaces with ultra-short laser pulses. Appl. Surf. Sci., 2002, 186(1–4): 352.

[22]

Vorobyev AY, Guo CL. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals. Appl. Phys. A, 2007, 86(3): 321.

[23]

H.R. Dehghanpour, Laser wavelength and dose effects on Al nanoparticles structural formation in deionized water, J. Laser Appl., 28(2016), No. 4, art. No. 042007.

[24]

Stratakis E, Zorba V, Barberoglou M, Fotakis C, Shafeev GA. Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids. Appl. Surf. Sci., 2009, 255(10): 5346.

[25]

Stratakis E, Barberoglou M, Fotakis C, Viau G, Garcia C, Shafeev GA. Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses. Opt. Express, 2009, 17(15): 12650.

[26]

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G.A. Shafeev, Laser writing of nanostructures on bulk Al via its ablation in liquids, Nanotcchnoloy, 20(2009), No. 10, art. No. 105303.

[27]

Sun J, Simon SL. The melting behavior of aluminum nanoparticles. Thermochim. Acta, 2007, 463(1–2): 32.

[28]

Podagatlapalli GK, Hamad S, Mohiddon MA, Rao SV. Fabrication of nanoparticles and nanostructures using ultrafast laser ablation of silver with Bessel beams. Laser Phys. Lett, 2015, 12(3): 036003.

[29]

Zhang DS, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev., 2017, 117(5): 3990.

[30]

Santagata A, De Bonis A, De Giacomo A, Dell’Aglio M, Laurita A, Senesi GS, Gaudiuso R, Orlando S, Teghil R, Parisi GP. Carbon-based nanostructures obtained in water by ultrashort laser pulses. J. Phys. Chem. C, 2011, 115(12): 5160.

[31]

Menéndez-Manjón A, Chichkov BN, Barcikowski S. Influence of water temperature on the hydrodynamic diameter of gold nanoparticles from laser ablation. J. Phys. Chem. C, 2010, 114(6): 2499.

[32]

De Bonis A, Sansone M, D’Alessio L, Galasso A, Santagata A, Teghil R. Dynamics of laser-induced bubble and nanoparticles generation during ultra-short laser ablation of Pd in liquid. J. Phys. D: Appl. Phys., 2013, 46(44): 445301.

[33]

Jost D, Lüthy W, Weber HP. Laser pulse width dependent surface ripples on silicon. Appl. Phys. Lett, 1986, 49(11): 625.

[34]

Fauchet PM, Siegman AE. Surface ripples on silicon and gallium arsenide under picosecond laser illumination. Appl Phys. Lett., 1982, 40(9): 824.

[35]

Sipe JE, Young JF, Preston JS, van Driel HM. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B, 1983, 27(2): 1141.

[36]

Temple PA, Soileau MJ. Polarization charge model for laser-induced ripple patterns in dielectric materials. IEEE J. Quantum Electron., 1981, 17(10): 2067.

[37]

Huang M, Zhao FL, Cheng Y, Xu NS, Xu ZZ. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano, 2009, 3(12): 4062.

[38]

Reif J, Varlamova O, Costache F. Femtosecond laser induced nanostructure formation: Self-organization control parameters. Appl. Phys. A, 2008, 92(4): 1019.

[39]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, Effect of surface roughening on femtosecond laser-induced ripple structures, Appl. Phys. Lett., 90(2007), No. 15, art. No. 153115.

[40]

D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, and J. Bonse, Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO, J. Appl. Phys., 105(2009), No. 3, art. No. 034908.

[41]

Xue L, Yang JJ, Yang Y, Wang YS, Zhu XN. Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses. Appl. Phys. A, 2012, 109(2): 357.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/