Direct electrochemical N-doping to carbon paper in molten LiCl-KCl-Li3N

Dong-hua Tian , Zhen-chao Han , Ming-yong Wang , Shu-qiang Jiao

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (12) : 1687 -1694.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (12) : 1687 -1694. DOI: 10.1007/s12613-020-2026-z
Article

Direct electrochemical N-doping to carbon paper in molten LiCl-KCl-Li3N

Author information +
History +
PDF

Abstract

Graphite materials are widely used as electrode materials for electrochemical energy storage. N-doping is an effective method for enhancing the electrochemical properties of graphite. A novel one-step N-doping method for complete and compact carbon paper was proposed for molten salt electrolysis in the LiCl-KCl-Li3N system. The results show that the degree of graphitization of carbon paper can be improved by the electrolysis of molten salts, especially at 2.0 V. Nitrogen gas was produced at the anode and nitrogen atoms can substitute carbon atoms of carbon paper at different sites to create nitrogen doping during the electrolysis process. The doping content of N in carbon paper is up to 13.0wt%. There were three groups of nitrogen atoms, i.e. quaternary N (N-Q), pyrrolic N (N-5), and pyridinic N (N-6) in N-doping carbon paper. N-doping carbon paper as an Al-ion battery cathode shows strong charge-recharge properties.

Keywords

N-doping / carbon paper / molten salt electrolysis / electrochemical process

Cite this article

Download citation ▾
Dong-hua Tian, Zhen-chao Han, Ming-yong Wang, Shu-qiang Jiao. Direct electrochemical N-doping to carbon paper in molten LiCl-KCl-Li3N. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(12): 1687-1694 DOI:10.1007/s12613-020-2026-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xue YR, Li YL, Zhang J, Liu ZF, Zhao YL. 2D graphdiyne materials: Challenges and opportunities in energy field. Sci. China Chem., 2018, 61(7): 765.

[2]

Chen LJ, Chen H, Wang Z, Gong XZ, Chen XH, Wang MY, Jiao SQ. Self-supporting lithiophilic N-doped carbon rod array for dendrite-free lithium metal anode. Chem. Eng. J., 2019, 363, 270.

[3]

Wang HB, Zhang CJ, Liu ZH, Wang L, Han PX, Xu HX, Zhang KJ, Dong SM, Yao JH, Cui GL. Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem., 2011, 21(14): 5430.

[4]

Mao Y, Duan H, Xu B, Zhang L, Hu YS, Zhao CC, Wang ZX, Chen LQ, Yang YS. Lithium storage in nitrogen-rich mesoporous carbon materials. Energ. Environ. Sci., 2012, 5(7): 7950.

[5]

Lin MC, Gong M, Lu BG, Wu YP, Wang DY, Guan MY, Angell M, Chen CX, Yang J, Hwang BJ, Dai HJ. An ultrafast rechargeable aluminium-ion battery. Nature, 2015, 520(7547): 324.

[6]

Wang S, Jiao SQ, Song WL, Chen HS, Tu JG, Tian DH, Jiao HD, Fu CP, Fang DN. A novel dual-graphite aluminum-ion battery. Energy Storage Mater., 2018, 12, 119.

[7]

Sun HB, Wang W, Yu ZJ, Yuan Y, Wang S, Jiao SQ. A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun., 2015, 51(59): 11892.

[8]

Song Y, Jiao SQ, Tu JG, Wang JX, Liu YJ, Jiao HD, Mao XH, Guo ZC, Fray DJ. A long-life rechargeable Al ion battery based on molten salts. J. Mater. Chem. A, 2017, 5(3): 1282.

[9]

Shao YY, Zhang S, Engelhard MH, Li GS, Shao GC, Wang Y, Liu J, Aksay IA, Lin YH. Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem., 2010, 20(35): 7491.

[10]

Lin TQ, Chen IW, Liu FX, Yang CY, Bi H, Xu FF, Huang FQ. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015, 350(6267): 1508.

[11]

Wu YP, Zhu JH, Huang L. A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment. Carbon, 2019, 143, 610.

[12]

Xu Y, Zhang CL, Zhou M, Fu Q, Zhao CX, Wu MH, Lei Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nature Commun., 2018, 9(1): 1720.

[13]

Lei HP, Tu JG, Tian DH, Jiao SQ. A nitrogen-doped graphene cathode for high-capacitance aluminum-ion hybrid supercapacitors. New J. Chem., 2018, 42(19): 15648.

[14]

Schiros T, Nordlund D, Pálová L, Prezzi D, Zhao LY, Kim KS, Wurstbauer U, Gutiérrez C, Delongchamp D, Jaye C, Fischer D, Ogasawara H, Pettersson LGM, Reichman DR, Kim P, Hybertsen MS, Pasupathy AN. Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett., 2012, 12(8): 4025.

[15]

Huang CS, Li YJ, Wang N, Xue YR, Zuo ZC, Liu HB, Li YL. Progress in research into 2D graphdiyne-based materials. Chem. Rev., 2018, 118(16): 7744.

[16]

Hou JH, Cao CB, Idrees F, Ma XL. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano, 2015, 9(3): 2556.

[17]

Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E. Effect of nitrogen in carbon electrode on the super-capacitor performance. Chem. Phys. Lett., 2005, 404(1–3): 53.

[18]

Wood KN, O’Hayre R, Pylypenko S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci., 2014, 7(4): 1212.

[19]

Panchokarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater., 2009, 21(46): 4726.

[20]

Wang XW, Sun GZ, Routh P, Kim DH, Huang W, Chen P. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev., 2014, 43(20): 7067.

[21]

Han ZC, Ge JB, Zhu J, Wang MY, Jiao SQ. A convenient electrochemical method for preparing carbon nanotubes filled with amorphous boron. J. Electrochem. Soc., 2018, 165(16): E879.

[22]

Z.Q. Tan, K. Ni, G.X. Chen, W.C. Zeng, Z.C. Tao, M. Ikram, Q.B. Zhang, H.J. Wang, L.T. Sun, X.J. Zhu, X.J. Wu, H.X. Ji, R.S. Ruoff, and Y.W. Zhu, Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C-60 molecules to obtain superior energy storage, Adv. Mater., 29(2017), No. 8, art. No. 1603414.

[23]

W.J. Lee, J. Lim, and S.O. Kim, Nitrogen dopants in carbon nanomaterials: Defects or a new opportunity?, Small Methods, 1(2017), No. 1–2, art. No. 1600014.

[24]

Zhou Z, Gao XP, Yan J, Song DY. Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations. Carbon, 2006, 44(5): 939.

[25]

Arenal R, March K, Ewels CP, Rocquefelte X, Kociak M, Loiseau A, Stephan O. Atomic configuration of nitrogen-doped single-walled carbon nanotubes. Nano Lett., 2014, 14(10): 5509.

[26]

Zhao YS, Wan JW, Yao HY, Zhang LJ, Lin KF, Wang L, Yang NL, Liu DB, Song L, Zhu J, Gu L, Liu L, Zhao HJ, Li YL, Wang D. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nature Chem., 2018, 10(9): 924.

[27]

T. Kondo, S. Casolo, T. Suzuki, T. Shikano, M. Sakurai, Y. Harada, M. Saito, M. Oshima, M.I. Trioni, G.F. Tantardini, and J. Nakamura, Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms, Phys. Rev. B, 86(2012), No. 3, art. No. 035436.

[28]

Panchakarla LS, Govindaraj A, Rao CNR. Boron- and nitrogen-doped carbon nanotubes and graphene. Inorg. Chim. Acta, 2010, 363(15): 4163.

[29]

Lei HP, Tu JG, Tian DH, Jiao SQ. Electrochemically Exfoliating graphite cathode to N-doped graphene analogue and its excellent Al storage performance. J. Electrochem. Soc., 2019, 166(10): A1738.

[30]

Ito Y, Christodoulou C, Nardi MV, Koch N, Sachdev H, Müllen K. Chemical vapor deposition of N-doped graphene and carbon films: The role of precursors and gas phase. ACS Nano, 2014, 8(4): 3337.

[31]

Choucair M, Thordarson P, Stride JA. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnol., 2009, 4(1): 30.

[32]

Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR. Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C, 2009, 113(11): 4257.

[33]

Deng DH, Pan XL, Yu L, Cui Y, Jiang YP, Qi J, Li WX, Fu QA, Ma XC, Xue QK, Sun GQ, Bao XH. Toward N-doped graphene via solvothermal synthesis. Chem. Mater., 2011, 23(5): 1188.

[34]

Jiao SQ, Zhu HM. Novel metallurgical process for titanium production. J. Mater. Res., 2006, 21(9): 2172.

[35]

Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407(6802): 361.

[36]

Kartal L, Daryal MB, Şireli GK, Timur S. One-step electrochemical reduction of stibnite concentrate in molten borax. Int. J. Miner. Metall. Mater., 2019, 26(10): 1258.

[37]

Kartal L, Timur S. Direct electrochmical reduction of copper sulfide in molten borax. Int. J. Miner. Metall. Mater., 2019, 26(8): 992.

[38]

Okabe TH, Horiuchi A, Jacob KT, Waseda Y. Physiochemical studies of lithium nitride in molten LiCl-KCl. Mater. Trans. Jim, 2000, 41(7): 822.

[39]

Chen H, Xu HY, Wang SY, Huang TQ, Xi JB, Cai SY, Guo F, Xu Z, Gao WW, Gao C. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci. Adv., 2017, 3(12): 8.

[40]

S. Wang, Z.J. Yu, J.G. Tu, J.X. Wang, D.H. Tian, Y.J. Liu, and S.Q. Jiao, A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene, Adv. Energy Mater., 6(2016), No. 13, art. No. 1600137.

[41]

Childress AS, Parajuli P, Zhu J, Podila R, Rao AM. A Raman spectroscopic study of graphene cathodes in high-performance aluminum ion batteries. Nano Energy, 2017, 39, 69.

[42]

Okabe TH, Horiuchi A, Jacob KT, Waseda Y. Electrochemical properties of Li3N dissolved in molten LiCl at 900 K. J. Electrochem. Soc., 2001, 148(5): E219.

[43]

Goto T, Toyoura K, Tsujimura H, Ito Y. Formation and control of zinc nitride in a molten LiCl-KCl-Li3N system. Mat. Sci. Eng. A, 2004, 380(1–2): 41.

[44]

Wang HB, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal., 2012, 2(5): 781.

[45]

Rao CNR, Sood AK, Voggu R, Subrahmanyam KS. Some novel attributes of graphene. J. Phys. Chem. Lett., 2010, 1(2): 572.

[46]

Lei HP, Tu JG, Yu ZJ, Jiao SQ. Exfoliation mechanism of graphite cathode in ionic liquids. ACS Appl. Mater. Interfaces, 2017, 9(42): 36702.

[47]

Das SK. Graphene: a cathode material of choice for aluminum-ion batteries. Angew. Chem. Int. Ed., 2018, 57(51): 16606.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/