Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys

Xi-cong Ye , Tong Wang , Zhang-yang Xu , Chang Liu , Hai-hua Wu , Guang-wei Zhao , Dong Fang

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1326 -1331.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1326 -1331. DOI: 10.1007/s12613-020-2024-1
Article

Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys

Author information +
History +
PDF

Abstract

We prepared (CuCoFeNi)Ti x (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) high-entropy alloys (HEAs) by vacuum arc melting and then investigated the effects of Ti on their microstructure and mechanical properties. When x was inreased to 0.6, the structure of the alloy transformed from their initial single face-centered cubic (fcc) structure into fcc+Laves mixed structure. The Laves phase was found to comprise Fe2Ti and be mainly distributed in the dendrite region. With increasing Ti content, both the Laves phase and the hardness of the alloy increased, whereas its yield and fracture strengths first increased and then decreased, reaching their highest value when x was 0.8. The (CuCoFeNi)Ti0.8 alloy exhibited the best overall mechanical properties, with yield and fracture strengths of 949.7 and 1723.4 MPa, respectively, a fracture strain of 27.92%, and a hardness of HV 461.6.

Keywords

high-entropy alloys / microstructure / compression performance / Vickers hardness

Cite this article

Download citation ▾
Xi-cong Ye, Tong Wang, Zhang-yang Xu, Chang Liu, Hai-hua Wu, Guang-wei Zhao, Dong Fang. Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(10): 1326-1331 DOI:10.1007/s12613-020-2024-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeh JW, Lin SJ, Chin TS, Gan JY, Chen SK, Shun TT, Tsau CH, Chou SY. Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A, 2004, 35(8): 2533.

[2]

Cantor B, Chang ITH, Knight P, Vincent AJB. Micro-structural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 2004, 375–377, 213.

[3]

Cantor B, Kim KB, Warren PJ. Novel multicomponent amorphous alloys. J. Metastable Nanocryst. Mater., 2002, 13, 27.

[4]

Cantor B. Multicomponent and high entropy alloys. Entropy, 2014, 16(9): 4749.

[5]

Gao N, Lu DH, Zhao YY, Liu XW, Liu GH, Wu Y, Liu G, Fan ZT, Lu ZP, George EP. Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation. J. Alloys Compd., 2019, 792, 1028.

[6]

Yeh JW. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mater., 2006, 31(6): 633.

[7]

Cai ZB, Jin G, Cui XF, Li Y, Fan Y, Song JH. Experimental and simulated data about microstructure and phase composition of a NiCrCoTiV high-entropy alloy prepared by vacuum hot-pressing sintering. Vacuum, 2016, 124, 5.

[8]

Chen YX, Zhu S, Wang XM, Yang BJ, Han GF, Qiu L. Microstructure evolution and strengthening mechanism of Al0.4CoCu0.6NiSix, (x = 0−0.2) high entropy alloys prepared by vacuum arc melting and copper injection fast solidification. Vacuum, 2018, 150, 84.

[9]

Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[10]

Zhou YJ, Zhang Y, Wang YL, Chen GL. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys. Mater. Sci. Eng. A, 2007, 454–455, 260.

[11]

Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90(2007), No. 18, art. No. 181904.

[12]

Lu YP, Dong Y, Gao XZ, Jiang L, Chen ZN, Jie JC, Kang HJ, Zhang YB, Guo S, Ruan HH, Zhao YH, Cao ZQ, Li TJ. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater., 2017, 124, 143.

[13]

Hsu CY, Sheu TS, Yeh JW, Chen SK. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear, 2010, 268(5–6): 653.

[14]

Chen YY, Duval T, Hung UD, Yeh JW, Shih HC. Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel. Corros. Sci., 2005, 47(9): 2257.

[15]

Churyumov AY, Pozdniakov AV, Bazlov AI, Mao H, Polkin VI, Louzguine-Luzgin DV. Effect of Nb addition on microstructure and thermal and mechanical properties of Fe–Co–Ni–Cu–Cr multiprincipal-element (high-entropy) alloys in as-cast and heat-treated state. JOM, 2019, 71(10): 3481.

[16]

Tsai CW, Tsai MH, Yeh JW, Yang CC. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy. J. Alloys Compd, 2010, 490(1–2): 160.

[17]

Gómez-Esparza CD, Campos-Venegas K, Solis-Canto O, Alvarado-Orozco JM, MuñozSaldaña J, Herrera-Ramírez J M, Martínez-Sánchez R. Nanohardness and microstructure of NiCoAlFeCu and NiCoAlFeCuCr alloys produced by mechanical alloying. Microsc. Microanal., 2014, 20(S3): 2106.

[18]

Ye HM, Yang WC, Pang XZ, Yang JB, Zhan YZ. Effect of titanium content on wear resistance of CoCuFeNiVTix high-entropy alloys. J. Guangxi Univ. Nat. Sci. Ed., 2017, 42(3): 1187.

[19]

Tong CJ, Chen YL, Yeh JW, Lin SJ, Chen SK, Shun TT, Tsau CH, Chang SY. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multi-principal elements. Metall. Mater. Trans. A, 2005, 36(4): 881.

[20]

Qin G, Wang S, Chen RR, Gong X, Wang L, Su YQ, Guo JJ, Fu HZ. Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys. J. Mater. Sci. Technol., 2018, 34(2): 365.

[21]

Kumar A, Swarnakar AK, Basu A, Chopkar M. Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSix, high entropy alloys. J. Alloys Compd., 2018, 748, 889.

[22]

Wang XF, Zhang Y, Qiao Y, Chen GL. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 2007, 15(3): 357.

[23]

Fan QC, Li BS, Zhang Y. Influence of Al and Cu elements on the microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys. J. Alloys Compd., 2014, 614, 203.

[24]

Hsu CY, Juan CC, Sheu TS, Chen SK, Yeh JW. Effect of aluminum content on microstructure and mechanical properties of AlxCoCrFeMo0.5Ni high-entropy alloys. JOM, 2013, 65(12): 1840.

[25]

Dong Y, Lu YP, Zhang JJ, Li TJ. Microstructure and properties of multi-component AlxCoCrFeNiTi0.5 high-entropy alloys. Mater. Sci. Forum, 2013, 745–746, 775.

[26]

Chen Z, Chen WP, Wu BY, Cao XY, Liu LS, Fu ZQ. Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A, 2015, 648, 217.

[27]

Guo S. Phase selection rules for cast high entropy alloys: An overview. Mater. Sci. Technol., 2015, 31(10): 1223.

[28]

Guo S, Liu CT. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int., 2011, 21(6): 433.

[29]

Senkov ON, Miracle DB. A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloys Compd., 2016, 658, 603.

[30]

Huo WY, Zhou H, Fang F, Zhou XF, Xie ZH, Jiang JQ. Microstructure and properties of novel CoCrFeNiTax eu-tectic high-entropy alloys. J. Alloys Compd., 2018, 735, 897.

[31]

Liu L, Zhang Y, Zhao ZF, Wang B, Qi MG, Shang J. Microstructure and mechanical properties of AlxCoCuFeNi high entropy alloys. Special Cast. Nonferrous Alloys, 2016, 36(6): 570.

[32]

Lian SH, Peng WY, Zhang AS. Research on microstructure and mechanical properties of FeCoNiAlCux high entropy alloys with multi-principal element. Hot Working Technol., 2017, 46(12): 1.

[33]

Liu L, He LJ, Qi JG, Wang B, Zhao ZF, Shang J, Zhang Y. Effects of Sn element on microstructure and properties of SnxAl2.5FeCoNiCu multi-component alloys. J. Alloys Compd, 2016, 654, 327.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/