Protein adsorption, cell viability and corrosion properties of Ti6Al4V alloy treated by plasma oxidation and anodic oxidation

Özgü Bayrak , Hojjat Ghahramanzadeh Asl , Ayşe Ak

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (9) : 1269 -1280.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (9) : 1269 -1280. DOI: 10.1007/s12613-020-2020-5
Article

Protein adsorption, cell viability and corrosion properties of Ti6Al4V alloy treated by plasma oxidation and anodic oxidation

Author information +
History +
PDF

Abstract

The hardness, wettability, and electrochemical properties of Ti6Al4V alloy surfaces treated with anodic oxidation and plasma oxidation as well as the viabilities of the different cell lines on the obtained surfaces were investigated. The anodic oxidation was performed for 10 min under 100 V potential, and it resulted in a 0.95 µm thick nanoporous anatase-TiO2 structure. On the other hand, plasma oxidation was carried out at 650°C for 1 h and resulted in a dense rutile-TiO2 structure with a thickness of 1.2 µm. While a hardness of HV0.025 823 and roughness of ∼220 nm were obtained by plasma oxidation, those obtained by anodic oxidation were HV0.025 512 and ∼130 nm, respectively. The anodic oxidation process created a more hydrophilic surface with a contact angle of 87.2°. Both oxidation processes produced similar properties in terms of corrosion behavior and showed better resistance than the as-received state in a certain range of potential. Moreover, the surface treatments led to no significant change in the protein adsorption levels, which indicates that the difference in viability between the osteoblast and fibroblast cells was not due to the difference in surface protein adsorption. Given all the factors, the surfaces obtained by anodic oxidation treatment revealed higher cell viability than those obtained by plasma oxidation (p = 0.05).

Keywords

Ti6Al4V / oxidation / corrosion / cell viability / protein adsorption

Cite this article

Download citation ▾
Özgü Bayrak, Hojjat Ghahramanzadeh Asl, Ayşe Ak. Protein adsorption, cell viability and corrosion properties of Ti6Al4V alloy treated by plasma oxidation and anodic oxidation. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(9): 1269-1280 DOI:10.1007/s12613-020-2020-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodman SB, Yao ZY, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterial, 2013, 34(13): 3174.

[2]

Oldani C, Dominguez A. Fokter S. Titanium as a biomaterial for implants. Recent Advances in Aetheoplasty, 2012, London, InTechOpen, 149.

[3]

Saini M, Singh Y, Arora P, Arora V, Jain K. Implant biomaterials: A comprehensive review. Woeld J. Clin. Cases, 2015, 3(1): 52.

[4]

Wang K. The use of titanium for medical applications in the USA. Matee. Sci. Eng. A, 1996, 213(1–2): 134.

[5]

Zieliński A, Sobieszczyk S, Seramak T, Serbiński W, Świeczko-Żurek B, Ossowska A. Biocompatibility and bioactivity of load-bearing metallic implants. Adv. Matee. Sci., 2010, 10(4): 21.

[6]

Yetim AF, Yildiz F, Vangolu Y, Alsaran A, Celik A. Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy. Wear, 2009, 267(12): 2179.

[7]

Stratton P, Graf M. Wear of diffusion hardened Ti-6Al-4V sliding against tool steel. Wear, 2010, 268(3–4): 612.

[8]

Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R, 2004, 47(3–4): 49.

[9]

Minagar S, Berndt CC, Wang J, Ivanova E, Wen CE. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater., 2012, 8(8): 2875.

[10]

Rapuano BE, Singh H, Boskey AL, Doty SB, MacDonald DE. Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy: Eveidence for enhanced osteoinductive properties. J. Cell. Biochem., 2013, 114(8): 1917.

[11]

MacDonald DE, Rapuano BE, Vyas P, Lane JM, Meyers K, Wright T. Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy promote bone formation and osseointegration. J. Cell. Biochem., 2013, 114(10): 2363.

[12]

Anderson KL, Apolinario EE, MacAuley SR, Sowers KR. A 5′ leader sequence regulates expression of methanosarcinal CO dehydrogenase/acetyl coenzyme A synthase. J. Bacteriol., 2009, 191(22): 7123.

[13]

Pizzoferrato A, Ciapetti G, Stea S, Cenni E, Arciola CR, Granchi D. Cell culture methods for testing biocompatibility. Clin. Mater., 1994, 15(3): 173.

[14]

Anderson JM. Future challenges in the in vitro and in vivo evaluation of biomaterial biocompatibility. Regen. Biomater., 2016, 3(2): 73.

[15]

Rinner M, Gerlach J, Ensinger W. Formation of titanium oxide films on titanium and Ti6Al4V by O2-plasma immersion ion implantation. Surf. Coat. Technol., 2000, 132(2–3): 111.

[16]

Silva MAM, Martinelli AE, Alves C, Nascimento RM, Távora MP, Vilar CD. Surface modification of Ti implants by plasma oxidation in hollow cathode discharge. Surf. Coat. Technol., 2006, 200(8): 2618.

[17]

Borgioli F, Galvanetto E, Galliano FP, Bacci T. Air treatment of pure titanium by furnace and glow-discharge processes. Surf. Coat. Technol., 2001, 141(1): 103.

[18]

Uttiya S, Contarino D, Prandi S, Carnasciali MM, Gemme G, Mattera L, Rolandi R, Canepa M, Cavalleri O. Anodic oxidation of titanium in sulphuric acid and phosphoric acid electrolytes. J. Mater. Sci. Nanotechnol., 2014, 1(1): S106.

[19]

Asumpinwong W, Saengkiettiyut K, Srimaneepong V. Different constant voltages of anodization on the corrosion behavior of Ti-6Al-4V alloy. Chiang Mai J. Sci., 2015, 42(1): 239.

[20]

Sharma AK. Anodizing titanium for space applications. Thin Solid Films, 1992, 208(1): 48.

[21]

Lasia A. Conway BE, Bockris JO, White RE. Electrochemical impedance spectroscopy and its applications. Modern Aspects of Electrochemistry, 2002, Boston, Springer

[22]

Acciari HA, Palma DPS, Codaro EN, Zhou QY, Wang JP, Ling YH, Zhang JZ, Zhang ZJ. Surface modifications by both anodic oxidation and ion beam implantation on electropolished titanium substrates. Appl. Surf. Sci., 2019, 487, 1111.

[23]

Traid HD, Vera ML, Ares AE, Litter MI. Porous titanium dioxide coatings obtained by anodic oxidation for photocatalytic applications. Procedia Mater. Sci., 2015, 9, 619.

[24]

Soares TA, Mozaffari H, Reinecke H. Generation of microstructures on a Ti-6Al-4V substrate through anodization. Surf. Coat. Technol., 2015, 278, 64.

[25]

Satoh K, Sato S, Wagatsuma K. Formation mechanism of toxic-element-free oxide layer on Ti-6Al-4V alloy in d.c. glow discharge plasma with pure oxygen gas. Surf. Coat. Technol., 2016, 302, 82.

[26]

Çelik A, Aslan M, Yetim AF, Bayrak Ö. Wear behavior of plasma oxidized CoCrMo alloy under dry and simulated body fluid conditions. J. Bionic Eng., 2014, 11(2): 303.

[27]

M. Aslan, O. Çomaklı, M. Yazıcı, A.F. Yetim, Ö. Bayrak, and A. Çelik, The effect of plasma oxidation and nitridation on corrosion behavior of CoCrMo alloy in SBF solution, Surf. Rev. Lett., 25(2018), No. 08, art. No. 1950024.

[28]

Çelik A, Bayrak Ö, Alsaran A, Kaymaz İ, Yetim AF. Effects of plasma nitriding on mechanical and tribological properties of CoCrMo alloy. Surf. Coat. Technol., 2008, 202(11): 2433.

[29]

A. Yli-Pentti, Electroplating and electroless plating, [in] S. Hashmi, G.F. Batalha, C.J.V. Tyne, and B. Yilbas, eds., Comprehensive Materials Processing, Elsevier, 2014.

[30]

Alves AC, Wenger F, Ponthiaux P, Celis JP, Pinto AM, Rocha LA, Fernandes JCS. Corrosion mechanisms in titanium oxide-based films produced by anodic treatment. Electrochim. Acta, 2017, 234, 16.

[31]

Veys-Renaux D, Haj ZAE, Rocca E. Corrosion resistance in artificial saliva of titanium anodized by plasma electrolytic oxidation in Na3PO4. Surf. Coat. Technol., 2016, 285, 214.

[32]

Elagli K, Traisnel M, Hildebrand HF. Electrochemical behaviour of titanium and dental alloys in artificial saliva. Electrochim. Acta, 1993, 38(13): 1769.

[33]

Cai KY, Bossert J, Jandt KD. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?. Colloids Surf. B, 2006, 49(2): 136.

[34]

Li BE, Li J, Liang CY, Li HP, Guo LT, Liu SM, Wang HS. Surface roughness and hydrophilicity of titanium after anodic oxidation. Rare Met. Mater. Eng., 2016, 45(4): 858.

[35]

Lukaszewska-Kuska M, Wirstlein P, Majchrowski R, Dorocka-Bobkowska B. Osteoblastic cell behaviour on modified titanium surfaces. Micron, 2018, 105, 55.

[36]

Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral Implan. Res., 2009, 20(s4): 172.

[37]

Bachle M, Kohal RJ. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin. Oral Implan. Res., 2004, 15(6): 683.

[38]

Guehennec LL, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater., 2008, 4(3): 535.

[39]

L. Crespo, M. Hierro-Oliva, S. Barriuso, V. Vadillo-Rodríguez, M.Á. Montealegre, L. Saldaña, E. Gomez-Barrena, J.L. González-Carrasco, M.L. González-Martín, and N. Vilaboa, On the interactions of human bone cells with Ti6Al4V thermally oxidized by means of laser shock processing, Biomed. Mater., 11(2016), No. 1, art. No. 015009.

[40]

Ku CH, Pioletti DP, Browne M, Gregson PJ. Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour. Biomaterials, 2002, 23(6): 1447.

[41]

Chen J, Mwenifumbo S, Langhammer C, McGovern JP, Li M, Beye A, Soboyejo WO. Cell/surface interactions and adhesion on Ti-6Al-4V: Effects of surface texture. J. Biomed. Mater. Res. Part B, 2007, 82(2): 360.

[42]

de Melo Silva W, Ribeiro CA, Marques CS, Tabata AS, Saeki MJ, Medeiros LI, de Oliveira DE. Fibroblast and pre-osteoblast cell adhesive behavior on titanium alloy coated with diamond film. Mater. Res., 2017, 20(2suppl): 284.

[43]

Shibata Y, Tanimoto Y. A review of improved fixation methods for dental implants Part I: Surface optimization for rapid osseointegration. J. Prosthodont. Res., 2015, 59(1): 20.

[44]

Park JH, Olivares-Navarrete R, Baier RE, Meyer AE, Tannenbaum R, Boyan BD, Schwartz Z. Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomater., 2012, 8(5): 1966.

[45]

Czarnowska E, Sowinska A, Cukrowska B, Sobiecki JR, Wierzchoñ T. Response of human osteoblast-like cells and fibroblasts to titanium alloy nitrided under glow discharge conditions. Mater. Sci. Forum, 2005, 475–479, 2415.

[46]

Czarnowska E, Wierzchoñ T, Maranda-Niedbala A. Properties of the surface layers on titanium alloy and their biocompatibility in in vitro eetts. J. Mater. Process. Technol., 1999, 92–93, 190.

[47]

Bruni S, Martinesi M, Stio M, Treves C, Bacci T, Borgioli F. Effects of surface treatment of Ti-6A1-4V titanium alloy on biocompatibility in cultured human umbilical vein endothelial cells. Acta Biomater., 2005, 1(2): 223.

[48]

Treves C, Martinesi M, Stio M, Gutiérrez A, Jiménez JA, López MF. In vitro biocompatibility evaluation of surface-modified titanium alloys. J. Biomed. Mater. Res. Part A, 2010, 92(4): 1623.

[49]

Huang CF, Cheng HC, Liu CM, Chen CC, Ou KL. Microstructure and phase transition of biocompatible titanium oxide film on titanium by plasma discharging. J. Alloys Compd., 2009, 476(1–2): 683.

[50]

El-Ghannam A, Starr L, Jones J. Laminin-5 coating enhances epithelial cell attachment, spreading, and hemidesmosome assembly on Ti-6Al-4V implant material in vitro. J. Biomed. Mater. Res., 1998, 41(1): 30.

[51]

Martinesi M, Bruni S, Stio M, Treves C, Borgioli F. In vitro interaction between surface-treated Ti-6Al-4V titanium alloy and human peripheral blood mononuclear cells. J. Boomed. Mater. Res. Part A, 2005, 74(2): 197.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/