Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering

Hui-min Xia , Lan Zhang , Yong-chao Zhu , Na Li , Yu-qi Sun , Ji-dong Zhang , Hui-zhong Ma

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (9) : 1295 -1300.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (9) : 1295 -1300. DOI: 10.1007/s12613-020-2009-0
Article

Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering

Author information +
History +
PDF

Abstract

A 0.3wt% graphene nanoplatelets (GNPs) reinforced 7075 aluminum alloy matrix (7075 Al) composite was fabricated by spark plasma sintering and its strength and wear resistance were investigated. The microstructures of the internal structure, the friction surface, and the wear debris were characterized by scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Compared with the original 7075 aluminum alloy, the hardness and elastic modulus of the 7075 Al/GNPs composite were found to have increased by 29% and 36%, respectively. The results of tribological experiments indicated that the composite also exhibited a lower wear rate than the original 7075 aluminum alloy.

Keywords

7075 aluminum alloy / graphene nanoplatelets / spark plasma sintering / strength / wear resistance

Cite this article

Download citation ▾
Hui-min Xia, Lan Zhang, Yong-chao Zhu, Na Li, Yu-qi Sun, Ji-dong Zhang, Hui-zhong Ma. Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(9): 1295-1300 DOI:10.1007/s12613-020-2009-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Suthar J, Patel KM. Processing issues, machining, and applications of aluminum metal matrix composites. Mater. Manuf. Process., 2018, 33(5): 499.

[2]

Ramkumar KR, Sivasankaran S, Al-mufadi FA, Siddharth S, Raghu R. Investigations on microstructure, mechanical, and tribological behaviour of AA7075-x wt.% TiC composites for aerospace applications. Arch. Civ. Mech. Eng., 2019, 19(2): 428.

[3]

Lu TW, Chen WP, Wang P, Mao MD, Liu YX, Fu ZQ. Enhanced mechanical properties and thermo-physical properties of 7075Al hybrid composites reinforced by the mixture of Cr particles and SiCp. J. Alloys. Compd., 2018, 735, 1137.

[4]

Kasar AK, Xiong GP, Menezes PL. Graphene-reinforced metal and polymer matrix composites. JOM, 2018, 70(6): 829.

[5]

Baskut S, Cinar A, Turan S. Directional properties and microstructures of spark plasma sintered aluminum nitride containing graphene platelets. J. Eur. Ceram. Soc., 2017, 37(12): 3759.

[6]

Chen FY, Ying JM, Wang YF, Du SY, Liu ZP, Huang Q. Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon, 2016, 96, 836.

[7]

Elghazaly A, Anis G, Salem HG. Effect of graphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite. Composites Part A, 2017, 95, 325.

[8]

Zhai WZ, Shi XL, Yao J, Ibrahim AMM, Xu ZS, Zhu QS, Xiao YC, Chen L, Zhang QX. Investigation of mechanical and tribological behaviors of multilayer graphene reinforced Ni3Al matrix composites. Composites Part B, 2015, 70, 149.

[9]

D.B. Xiong, M. Cao, Q. Guo, Z.Q. Tan, G.L. Fan, Z.Q. Li, and D. Zhang, High content reduced graphene oxide reinforced copper with a bioinspired nano-laminated structure and large recoverable deformation ability, Sci. Rep., 6(2016), art. No. 33801.

[10]

Chang SW, Nair AK, Buehler MJ. Nanoindentation study of size effects in nickel-graphene nanocomposites. Philos. Mag. Lett., 2013, 93(4): 196.

[11]

Tian WM, Li SM, Wang B, Chen X, Liu JH, Yu M. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int. J. Miner. Metall. Mater., 2016, 23(6): 723.

[12]

M. Prasad, T.N. Rao, P.S.R. Prasad, and D.S. Babu, Preparation of bulk graphene nanoplatelets by spark plasma sintering — electrical and thermal properties, Int. J. Nanosci., 15(2016), No. 05n06, art. No. 1660003.

[13]

Borkar T, Mohseni H, Hwang J, Scharf T, Tiley J, Hong SH, Banerjee R. Sano T, Srivatsan T S. Spark plasma sintering (SPS) of carbon nanotube (CNT)/graphene nanoplatelet (GNP)-nickel nanocomposites: Structure property analysis. Advanced Composites for Aerospace, Marine, and Land Applications II, 2015, Cham, The Minerais, Metals & Materials Society, Springer, 53.

[14]

Mu XN, Zhang HM, Cai HN, Fan QB, Zhang ZH, Wu Y, Fu ZJ, Yu DH. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites. Mater. Sci. Eng. A, 2017, 687, 164.

[15]

M.Y. Shen, T.Y. Chang, T.H. Hsieh, Y.L. Li, C.L. Chiang, H. Yang, and M.C. Yip, Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites, J. Nanomater., 2013(2013), art. No. 565401.

[16]

Berman D, Erdemir A, Sumant AV. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon, 2013, 59, 167.

[17]

Nieto A, Zhao JM, Han YH, Hwang KH, Schoenung JM. Microscale tribological behavior and in vitro biocompatibility of graphene nanoplatelet reinforced alumina. J. Mech. Behav. Biomed. Mater., 2016, 61, 122.

[18]

Munir ZA, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci., 2006, 41(3): 763.

[19]

Liu TT, He XB, Liu Q, Ren SB, Zhang L, Qu XH. Preparation and thermal conductivity of spark plasma sintered aluminum matrix composites reinforced with titanium-coated graphite fibers. Adv. Eng. Mater., 2015, 17(4): 502.

[20]

Nieto A, Lahiri D, Agarwal A. Graphene nanoplatelets reinforced tantalum carbide consolidated by spark plasma sintering. Mater. Sci. Eng. A, 2013, 582, 338.

[21]

Rashad M, Pan F, Tang A, Asif M. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci. Mater. Int., 2014, 24(2): 101.

[22]

Li G, Xiong BW. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites. J. Alloys Compd., 2017, 697, 31.

[23]

Bahrami A, Soltani N, Pech-canul MI. Effect of sintering temperature on tribological behavior of Ce-TZP/Al2O3 -aluminum nanocomposite. J. Compos. Meter., 2015, 49(28): 3507.

[24]

Deaquino-lara R, Soltani N, Bahrami A, Gutiérrez-castañeda E, García-sánchez E, Rodríguez MAL. Tribological characterization of Al7075-graphite composites fabricated by mechanical alloying and hot extrusion. Mater. Des., 2015, 67, 224.

[25]

Soltani N, Jafari Nodooshan HR, Bahrami A, Pechcanul MI, Liu WC, Wu GH. Effect of hot extrusion on wear properties of Al-15 wt.% Mg2Si in situ metal matrix composites. Mater. Des., 2014, 53, 774.

[26]

Tabandeh-khorshid M, Omrani E, Menezes PL, Rohatgi PK. Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Eng. Sci. Technol. Int. J., 2016, 19(1): 463.

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/