Safety of barricades in cemented paste-backfilled stopes

Xu Zhao , Andy Fourie , Ryan Veenstra , Chong-chong Qi

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (8) : 1054 -1064.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (8) : 1054 -1064. DOI: 10.1007/s12613-020-2006-3
Article

Safety of barricades in cemented paste-backfilled stopes

Author information +
History +
PDF

Abstract

In underground mining, there has been an increasing use of “cemented paste” for the backfilling of stopes. As this cemented paste backfill (CPB) enters the stope as a fluid, shotcrete barricades are often used to retain the fill material during and after the filling operations. However, failures of barricades have been reported around the world in recent years. This paper presents an analytical solution based on the elastic thin plate theory for calibrating the design of shotcrete barricades in underground mines using CPB. This solution was used to determine the quantitative relationships between the lateral loading from the paste and the barricade response during the backfilling process. The results show that the proposed solution agrees well with in situ data. According to the actual barricade responses, the acceptable tensile stress and an analysis method of cracks development are proposed. The proposed solution has practical significance for underground mines.

Keywords

cemented paste backfill / barricade / elastic thin plate theory / mine safety / in situ measurement

Cite this article

Download citation ▾
Xu Zhao, Andy Fourie, Ryan Veenstra, Chong-chong Qi. Safety of barricades in cemented paste-backfilled stopes. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(8): 1054-1064 DOI:10.1007/s12613-020-2006-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qi C. Big data management in the mining industry. Int. J. Miner. Metall. Mater., 2020, 27(2): 131.

[2]

W. Zhou, X.Y. Shi, X. Lu, C.C. Qi, B.Y. Luan, and F.M. Liu, The mechanical and microstructural properties of refuse mudstone-GGBS-red mud based geopolymer composites made with sand, Constr. Build. Mater., 253(2020), art. No. 119193.

[3]

Helinski M, Fahey M, Fourie A. Behavior of cemented paste backfill in two mine stopes: Measurements and modeling. J. Geotech. Geoenviron. Eng., 2011, 137(2): 171.

[4]

M.L. Bloss, An operational perspective of mine backfill, [in] Proceedings of the 11th internactional Symposium on Mining with Backfill, Perth, 2014, p. 15.

[5]

C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025.

[6]

Xu WB, Tian XC, Cao PW. Assessment of hydration process and mechanical properties of cemented paste backfill by electrical resistivity measurement. Nondestr. Test. Eval., 2018, 33(2): 198.

[7]

Int. J. Geosynth. Ground Eng., 2015, 1(2) art. No. 18

[8]

Zhao X, Fourie A, Qi CC. An analytical solution for evaluating the safety of an exposed face in a paste backfill stope incorporating the arching phenomenon. Int. J. Miner. Metall. Mater., 2019, 26(10): 1206.

[9]

Jiao HZ, Wang SF, Wu AX, Shen HM, Wang JD. Cementitious property of NaAlO2-activated Ge slag as cement supplement. Int. J. Miner. Metall. Mater, 2019, 26(12): 1594.

[10]

Tan YY, Yu X, Elmo D, Xu LH, Song WD. Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading. Int. J. Miner. Metall. Mater., 2019, 26(4): 404.

[11]

Xu WB, Cao PW, Tian MM. Strength development and microstructure evolution of cemented tailings backfill containing different binder types and contents. Minerals, 2018, 8(4): 167.

[12]

Helinski M, Fourie A, Fahey M, Ismail MI. Assessment of the self-desiccation process in cemented mine backfills. Can. Geotech. J., 2007, 44(10): 1148.

[13]

Cui L, Fall M. Modeling of pressure on retaining structures for underground fill mass. Tunnelling Underground Space Technol., 2017, 69, 94.

[14]

Cao S, Yilmaz E, Song WD. Fiber type effect on strength, toughness and microstructure of early age cemented tailings backfill. Constr. Build. Mater., 2019, 223, 44.

[15]

Helinski M, Fahey M, Fourie A. Numerical modeling of cemented mine backfill deposition. J. Geotech. Geoenviron. Eng., 2007, 133(10): 1308.

[16]

M.B. Revell and D.P. Sainsbury, Paste bulkhead failures, [in] Proceedings of International Symposium of MineFill07, Montreal, 2007.

[17]

M.B. Revell and D.P. Sainsbury, Advancing paste fill bulkhead design using numerical modeling, [in] Proceedings of International Symposium of MineFill07, Montreal, 2007.

[18]

Sivakugan N, Rankine K, Rankine R. Permeability of hydraulic fills and barricade bricks. Geotech. Geol. Eng., 2006, 24(3): 661.

[19]

Li LL, Aubertin M. Horizontal pressure on barricades for backfilled stopes. Part II: Submerged conditions. Can. Geotech. J., 2009, 46(1): 47.

[20]

Cao S, Yilmaz E, Song WD, Yilmaz E, Xue GL. Loading rate effect on uniaxial compressive strength behavior and acoustic emission properties of cemented tailings backfill. Constr. Build. Mater., 2019, 213, 313.

[21]

J. Li, J. Ferreira, and T.L. Lievre, Transition from discontinuous to continuous paste filling at Cannington Mine, [in] Proceedings of the 11th international Symposium on Mining with Backill, Perth, 2014, p. 381.

[22]

Thompson BD, Bawden WF, Grabinsky MW. In situ measurements of cemented paste backfill at the Cayeli Mine. Can. Geotech. J., 2012, 49(7): 755.

[23]

Ghazi S. Modeling of an Underground Mine Backfill Barricade, 2011, Toronto, University of Toronto

[24]

Cheung A. Influence of Rock Boundary Conditions on Behaviour of Arched and Flat Cemented Paste Backfill Barricade Walls, 2012, Toronto, University of Toronto

[25]

Z. Gürdal, R.T. Haftka, and P. Hajela, Design and Optimization of Laminated Composite Materials, Wiley-Interscience, 1999.

[26]

Huang YL. Ground Control Theory and Application of Solid Dense Backfill in Coal Mines, 2012, Xuzhou, China University of Mining and Technology

[27]

Carmona S, Aguado A. New model for the indirect determination of the tensile stress-strain curve of concrete by means of the Brazilian test. Mater. Struct., 2012, 45(10): 1473.

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/