Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy
Rakesh B. Nair , H. S. Arora , Harpreet Singh Grewal
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1353 -1362.
Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy
Friction stir processing of an Al0.1CoCrFeNi high entropy alloy (HEA) was performed at controlled cooling conditions (ambient and liquid submerged). Microstructural and mechanical characterization of the processed and as-cast HEAs was evaluated using electron backscat-ter diffraction, micro-hardness testing and nanoindentation. HEA under the submerged cooling condition showed elongated grains (10 µm) with fine equiaxed grains (2 µm) along the boundary compared to the coarser grain (∼2 mm) of as-cast HEA. The hardness showed remarkable improvements with four (submerged cooling condition) and three (ambient cooling condition) times that of as-cast HEA (HV ∼150). The enhanced hardness is attributed to the significant grain refinement in the processed HEAs. Cavitation erosion behavior was observed for samples using an ultrasonication method. All of the HEAs showed better cavitation erosion resistance than the stainless steel 316L. The sample processed under a submerged liquid condition showed approximately 20 and 2 times greater erosion resistance than stainless steel 316L and as-cast HEA, respectively. The enhanced erosion resistances of the processed HEAs correlate to their increased hardness, resistance to plasticity, and better yield strength than the as-cast HEA. The surface of the tested samples showed nucleation and pit growth, and plastic deformation of the material followed by fatigue-controlled disintegration as the primary material removal mechanism.
cavitation erosion / microstructure / mechanical properties / surface engineering
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
H.S. Arora, A. Ayyagari, J. Saini, K. Selvam, S. Riyadh, M. Pole, H.S. Grewal, and S. Mukherjee, High tensile ductility and strength in dual-phase bimodal steel through stationary friction stir processing, Sci. Rep., 9(2019), No. 1, art. No. 1976. |
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
H.S. Grewal, R.M. Sanjiv, H.S. Arora, R. Kumar, A. Ayyagari, S. Mukherjee, and H. Singh, Activation energy and high temperature oxidation behavior of multi-principal element alloy, Adv. Eng. Mater., 19(2017), No. 11, art. No. 1700182. |
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
M. Calcagnotto, D. Ponge, Y. Adachi, and D. Raabe, Effect of grain refinement on strength and ductility in dual-phase steels, [in] Proceedings of the 2nd International Symposium on Steel Science, Kyoto, 2009. |
| [50] |
|
| [51] |
|
| [52] |
|
/
| 〈 |
|
〉 |