Material flow behavior and microstructural evolution during refill friction stir spot welding of alclad 2A12-T4 aluminum alloy

Gao-hui Li , Li Zhou , Ling-yun Luo , Xi-ming Wu , Ning Guo

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (1) : 131 -141.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (1) : 131 -141. DOI: 10.1007/s12613-020-1998-z
Article

Material flow behavior and microstructural evolution during refill friction stir spot welding of alclad 2A12-T4 aluminum alloy

Author information +
History +
PDF

Abstract

In this study, we used the stop-action technique to experimentally investigate the material flow and microstructural evolution of al-clad 2A12-T4 aluminum alloy during refill friction stir spot welding. There are two material flow components, i.e., the inward- or outward-directed spiral flow on the horizontal plane and the upward- or downward-directed flow on the vertical plane. In the plunge stage, the flow of plasticized metal into the cavity is similar to that of a stack, whereby the upper layer is pushed upward by the lower layer. In the refill stage, this is process reversed. As such, there is no obvious vertical plasticized metal flow between adjacent layers. Welding leads to the coarsening of S (Al2CuMg) in the thermo-mechanically affected zone and the diminishing of S in the stir zone. Continuous dynamic recrystallization results in the formation of fine equiaxed grains in the stir zone, but this process becomes difficult in the thermo-mechanically affected zone due to the lower deformation rate and the pinning action of S precipitates on the dislocations and sub-grain boundaries, which leads to a high fraction of low-angle grain boundaries in this zone.

Keywords

refill friction stir spot welding / aluminum alloy / material flow behavior / precipitate evolution / dislocation configuration

Cite this article

Download citation ▾
Gao-hui Li, Li Zhou, Ling-yun Luo, Xi-ming Wu, Ning Guo. Material flow behavior and microstructural evolution during refill friction stir spot welding of alclad 2A12-T4 aluminum alloy. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(1): 131-141 DOI:10.1007/s12613-020-1998-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li GH, Zhou L, Zhou WL, Song XG, Huang YX. Influence of dwell time on microstructure evolution and mechanical properties of dissimilar friction stir spot welded aluminum-copper metals. J. Mater. Res. Technol., 2019, 8(3): 2613.

[2]

Patil RR, Anurag Tilak CJK, Srivastava V, De A. Minimising electrode wear in resistance spot welding of aluminium alloys. Sci. Technol. Weld. Joining, 2011, 16(6): 509.

[3]

Xu ZW, Li ZW, Ji SD, Zhang LG. Refill friction stir spot welding of 5083-O aluminum alloy. J. Mater. Sci. Technol., 2018, 34(5): 878.

[4]

Suhuddin UFH, Fischer V, dos Santos JF. The thermal cycle during the dissimilar friction spot welding of aluminum and magnesium alloy. Scripta Mater., 2013, 68(1): 87.

[5]

Huang YX, Han B, Lv SX, Feng JC, Liu HJ, Leng JS, Li Y. Interface behaviours and mechanical properties of filling friction stir weld joining AA 2219. Sci. Technol. Weld. Joining, 2012, 17(3): 225.

[6]

Tier MD, Rosendo TS, Dos Santos JF, Huber N, Mazzaferro JA, Mazzaferro CP, Strohaecker TR. The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds. J. Mater. Process. Technol., 2013, 213(6): 997.

[7]

Shen ZK, Yang XQ, Zhang ZH, Cui L, Li TL. Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Mater. Des., 2013, 44, 476.

[8]

Rosendo T, Parra B, Tier MAD, da Silva AAM, dos Santos JF, Strohaecker TR, Alcântara NG. Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminium alloy. Mater. Des., 2011, 32(3): 1094.

[9]

Cao JY, Wang M, Kong L, Guo LJ. Hook formation and mechanical properties of friction spot welding in alloy 6061-T6. J. Mater. Process. Technol., 2016, 230, 254.

[10]

Zhao YQ, Liu HJ, Chen SX, Lin Z, Hou JC. Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04-T74 aluminum alloy. Mater. Des., 2014, 62, 40.

[11]

Prangnell PB, Heason CP. Grain structure formation during friction stir welding observed by the ‘stop action technique’. Acta Mater., 2005, 53(11): 3179.

[12]

Shen J, Lage SBM, Suhuddin UFH, Bolfarini C, dos Santos JF. Texture development and material flow behavior during refill friction stir spot welding of AlMgSc. Metall. Mater. Trans. A, 2018, 49(1): 241.

[13]

Cao JY, Wang M, Kong L, Yin YH, Guo LJ. Numerical modeling and experimental investigation of material flow in friction spot welding of Al 6061-T6. Int. J. Adv. Manuf. Technol., 2017, 89(5–8): 2129.

[14]

Amancio-filho ST, Camillo APC, Bergmann L, dos Santos JF, Kury SE, Machado NGA. Preliminary investigation of the microstructure and mechanical behaviour of 2024 aluminium alloy friction spot welds. Mater. Trans., 2011, 52(5): 985.

[15]

Lin YC, Xia YC, Jiang YQ, Li LT. Precipitation in Al-Cu-Mg alloy during creep exposure. Mater. Sci. Eng. A, 2012, 556, 796.

[16]

Wang SC, Starink MJ, Gao N. Precipitation hardening in Al-Cu-Mg alloys revisited. Scripta Mater., 2006, 54(2): 287.

[17]

Ebrahimi GR, Ezatpour HR. Effect of precipitation on the warm deformation behavior of AA2024 alloy. Mater. Sci. Eng. A, 2017, 681, 10.

[18]

Wu WC, Wang YJ, Wang JB, Wei SM. Effect of electrical pulse on the precipitates and material strength of 2024 aluminum alloy. Mater. Sci. Eng. A, 2014, 608, 190.

[19]

Starink MJ, Gao N, Davin L, Yan J, Cerezo A. Room temperature precipitation in quenched Al-Cu-Mg alloys: a model for the reaction kinetics and yield strength development. Philos. Mag., 2005, 85(13): 1395.

[20]

Genevois C, Deschamps A, Denquin A, Doisneau-Cottignies B. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Mater., 2005, 53(8): 2447.

[21]

Cheng S, Zhao YH, Zhu YT, Ma E. Optimizing the strength and ductility of fine structured 2024 Al alloy by nanoprecipitation. Acta Mater., 2007, 55(17): 5822.

[22]

Avramovic-Cingara G, Perovic DD, Mcqueen HJ. Hot deformation mechanisms of a solution-treated Al-Li-Cu-Mg-Zr alloy. Metall. Mater. Trans. A, 1996, 27(11): 3478.

[23]

Gerlich A, Su P, Yamamoto M, North TH. Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy. J. Mater. Sci., 2007, 42, 5589.

[24]

Jones MJ, Heurtier P, Desrayaud C, Montheillet F, Allehaux D, Driver JH. Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy. Scripta Mater., 2005, 52(8): 693.

[25]

Jata KV, Semiatin SL. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scripta Mater., 2000, 43(8): 743.

[26]

Han J, Sun J, Wen TY, Guo F. Analysis of continuous recrystallization (sub) grain rotation behavior in Pb-free solder bumps under a 0.1 μm/s shear rate. J. Mater. Sci.-Mater. Electron., 2018, 29(13): 10992.

[27]

Su JQ, Nelson TW, Mishra R, Mahoney M. Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater., 2003, 51(3): 713.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/