Simulation on scrap melting behavior and carbon diffusion under natural convection

Ming Gao , Jin-tao Gao , Yan-ling Zhang , Shu-feng Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (3) : 380 -389.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (3) : 380 -389. DOI: 10.1007/s12613-020-1997-0
Article

Simulation on scrap melting behavior and carbon diffusion under natural convection

Author information +
History +
PDF

Abstract

A 3D model applying temperature- and carbon concentration- dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection. Simulated results agreed reasonably well with experimental ones. Scrap melting was subdivided into four stages: formation of a solidified layer, rapid melting of the solidified layer, carburization, and carburization + normal melting. The carburization stage could not be ignored at low temperature because the carburization time for the sample investigated was 214 s at 1573 K compared to 12 s at 1723 K. The thickness of the boundary layer with significant concentration difference at 1573 K increased from 130 µm at 5 s to 140 µm at 60 s. The maximum velocity caused by natural convection decreased from 0.029 m·s−1 at 5 s to 0.009 m·s−1 at 634 s because the differences in temperature and density between the molten metal and scrap decreased with time.

Keywords

scrap melting / natural convection / carbon diffusion / numerical simulation / electron probe micro-analyzer

Cite this article

Download citation ▾
Ming Gao, Jin-tao Gao, Yan-ling Zhang, Shu-feng Yang. Simulation on scrap melting behavior and carbon diffusion under natural convection. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(3): 380-389 DOI:10.1007/s12613-020-1997-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Oeters F, Ni RM. Metallurgy of Steelmaking, 1997, Beijing, The Metallurgical Industry Press, 479.

[2]

Pehlke RD, Goodell PD, Dunlap RW. Kinetics of steel dissolution in molten pig iron. Trans. Metall. Soc. ALME, 1965, 233, 1420.

[3]

Guthrie RIL, Stubbs P. Kinetics of scrap melting in baths of molten pig iron. Can. Metall. Q., 1973, 12(4): 465.

[4]

Mori K, Nomura H. Study on the rate of scrap melting in the steelmaking process. Tetsu-to-Hagané, 1969, 55(5): 347.

[5]

Gol’dfarb EM, Sherstov BI. Heat and mass transfer when melting scrap in an oxygen converter. J. Eng. Phys., 1970, 18(3): 342.

[6]

Weisz-Patrault D. Coupled heat conduction and multiphase change problem accounting for thermal contact resistance. Int. J. Heat Mass Transfer, 2017, 104, 595.

[7]

Shukla AK, Deo B, Robertson DGC. Scrap dissolution in molten iron containing carbon for the case of coupled heat and mass transfer control. Metall. Mater. Trans. B, 2013, 44(6): 1407.

[8]

Wu YK, Lacroix M. Numerical simulation of the melting of scrap metal in a circular furnace. Int. Commun. Heat Mass Transfer, 1995, 22(4): 517.

[9]

Isobe K, Maede H, Ozawa K, Umezawa K, Saito C. Analysis of the scrap melting rate in high carbon molten iron. Tetsu-to-Hagané, 1990, 76(11): 2033.

[10]

A. Kruskopf and S. Louhenkilpi, 1-dimensional scrap melting model for steel converter (BOF), [in] Proceedings of the METEC & 2nd ESTAD, Düsseldorf, Germany, 2015, p. 15.

[11]

Kruskopf A. Multiphysical Modeling Approach for Basic Oxygen Steelmaking Process, 2018, Finland, Aalto University, 12 [Dissertation]

[12]

Kruskopf A, Visuri VV. A gibbs energy minimization approach for modeling of chemical reactions in a basic oxygen furnace. Metall. Mater. Trans. B, 2017, 48(6): 3281.

[13]

Deng S, Xu AJ, Yang G, Wang HB. Analyses and calculation of steel scrap melting in a multifunctional hot metal ladle. Steel Res. Int., 2018, 90(3): 1.

[14]

H.P. Sun, Y.C. Liu, C.C. Lin, and L.U. Muh-Jung, Experimental observation of spherical scrap melting in hot metal, [in] International Congress on the Science & Technology of Steelmaking, Beijing, China, 2015, p. 136.

[15]

Penz FM, Schenk J, Ammer R, Klösch G, Pastucha K, Reischl M. Diffusive steel scrap melting in carbon-saturated hot metal-phenomenological investigation at the solid-liquid interface. Materials, 2019, 12(8): 1358.

[16]

M. Gao, S.F. Yang, and Y.L. Zhang, Experimental study on mass transfer during scrap melting in the steelmaking process, Ironmaking Steelmaking, (2019), p. 1.

[17]

Zhao HL, Zhao X, Mu LZ, Zhang LF, Yang LQ. Gas-liquid mass transfer and flow phenomena in a peirce-smith converter: a numerical model study. Int. J. Miner. Metall. Mater., 2019, 26(9): 1092.

[18]

Dongik J, Yumkyum K, Minsoo S, Joonho L. Kinetics of carbon dissolution of coke in molten iron. Metall. Mater. Trans. B, 2012, 43(6): 1308.

[19]

Fluent A. ANSYS Fluent Theory Guide, Release 15.0 ed., 2013, Canonsburg, PA, ANSYS Inc., 15317 ANSYS Inc., USA

[20]

Chen JX. Metallurgy of Iron and Steel (Steelmaking), 2012, Beijing, The Metallurgical Industry Press, 174.

[21]

Szekely J, Chuang YK, Hlinka JW. The melting and dissolution of low-carbon steels in iron-carbon melts. Metall. Mater. Trans. B, 1972, 3(11): 2825.

[22]

Kim YU, Pehlke R. Mass transfer during dissolution of a solid into liquid in the iron-carbon system. Metall. Trans., 1974, 5(12): 2527.

[23]

Kosaka M, Minowa S. Mass-transfer from solid metal cylinder into liquid metal. Tetsu-to-Hagane, 1966, 52(12): 1748.

[24]

Kosaka M, Minowa S. Mass-transfer from graphite cylinder into liquid Fe-C alloy. Tetsu-to-Hagane, 2010, 53(13): 1467.

[25]

Wu K. Principle of Metallurgical Transmission, 2016, Beijing, Peking University Press, 142.

[26]

Wright JK. Steel dissolution in quiescent and gas stirred Fe/C melts. Metall. Mater. Trans. B, 1989, 20(3): 363.

[27]

Liu ZY, Bao YP, Wang M, Li X, Zeng FZ. Austenite grain growth of medium carbon alloy steel with aluminum additions during heating process. Int. J. Miner. Metall. Mater., 2019, 26(3): 282.

[28]

Dakre V, Peshwe DR, Pathak SU, Likhite A. Effect of austenitization temperature on microstructure and mechanical properties of low carbon equivalent carbidic austempered ductile iron. Int. J. Miner. Metall. Mater., 2018, 25(7): 770.

[29]

Wei GS, Zhu R, Tang TP, Dong K. Study on the melting characteristics of steel scrap in molten steel. Ironmaking Steel-making, 2019, 46(7): 609.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/