Biodegradable magnesium-matrix composites: A review

Jin-long Su , Jie Teng , Zi-li Xu , Yuan Li

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (6) : 724 -744.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (6) : 724 -744. DOI: 10.1007/s12613-020-1987-2
Invited Review

Biodegradable magnesium-matrix composites: A review

Author information +
History +
PDF

Abstract

Biodegradable magnesium alloys as new biomedical implant materials have been extensively studied because of their notable biodegradability over traditional bio-inert metals. However, the extreme degradation rate of pure magnesium leads to the loss of its mechanical integrity before the tissue recovers completely. The solutions to this challenge are as follows: (1) purification, (2) alloying, (3) surface modification, and (4) biodegradable magnesium-matrix composites (BMMCs) synthesis. Owing to the tunability of mechanical properties, the adjustability of degradation rate, and the improvement of biocompatibility, BMMCs reinforced with bioactive reinforcements have promising applications as a new generation of biomedical implants. In this review, the processing methods, Mg matrix, and reinforcement phases of BMMCs are discussed. Moreover, the review comprehensively discusses various BMMCs synthesized thus far, aiming to show the governing aspects of the achieved mechanical properties, corrosion behavior, and biocompatibility. Finally, this paper also discusses the research direction and further development areas for these materials.

Keywords

magnesium-matrix composites / biomaterials / mechanical properties / corrosion behavior

Cite this article

Download citation ▾
Jin-long Su, Jie Teng, Zi-li Xu, Yuan Li. Biodegradable magnesium-matrix composites: A review. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(6): 724-744 DOI:10.1007/s12613-020-1987-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Liu, Y.F. Zheng, X.H. Chen, J.A. Yang, H.B. Pan, D.F. Chen, L.N. Wang, J.L. Zhang, D.H. Zhu, S.L. Wu, K.W.K. Yeung, R.C. Zeng, Y. Han, and S.K. Guan, Fundamental theory of biodegradable metals—Definition, criteria, and design, Adv. Funct. Mater., 29(2019), No. 18, art. No. 1805402.

[2]

Lantada AD. Handbook of Active Materials for Medical Devices: Advances and Applications, 2011, Singapore, Pan Stanford Publishing, 10.

[3]

Niinomi M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A, 2002, 33(3): 477.

[4]

Song GL. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci., 2007, 49(4): 1696.

[5]

Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006, 27(9): 1728.

[6]

Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci, 2008, 12(5–6): 63.

[7]

A.H. Yusop, A.A. Bakir, N.A. Shaharom, M.R. Abdul Kadir, and H. Hermawan, Porous biodegradable metals for hard tissue scaffolds: A review, Int. J. Biomater., 2012(2012), No. 2012, art. No. 641430.

[8]

Nayak S, Bhushan B, Jayaganthan R, Gopinath P, Agarwal RD, Lahiri D. Strengthening of Mg based alloy through grain refinement for orthopaedic application. J. Mech. Behav. Biomed. Mater., 2016, 59, 57.

[9]

Vormann J. Magnesium: Nutrition and metabolism. Mol. Aspects Med., 2003, 24(1–3): 27.

[10]

Kusnierczyk K, Basista M. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials. J. Biomater. Appl., 2017, 31(6): 878.

[11]

Y.W. Yang, C.X. He, D.Y. E, W.J. Yang, F.W. Qi, D.Q. Xie, L.D. Shen, S.P. Peng, and C.J. Shuai, Mg bone implant: Features, developments and perspectives, Mater. Des., 185(2020), art No. 108259.

[12]

Shahin M, Munir K, Wen CE, Li YC. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical. Acta Biomater, 2019, 96, 1.

[13]

Xiong GY, Nie YJ, Ji DH, Li J, Li CZ, Li W, Yong Z, Luo HL, Wan YZ. Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Curr. Appl. Phys., 2016, 16(8): 830.

[14]

Meenashisundaram GK, Nai MH, Almajid A, Gupta M. Development of high performance Mg-TiO2 nanocomposites targeting for biomedical/structural applications. Mater. Des., 2015, 65, 104.

[15]

Gupta M, Lai MO, Soo CY. Effect of type of processing on the microstructural features and mechanical properties of Al-Cu/SiC metal matrix composites. Mater. Sci. Eng. A, 1996, 210(1–2): 114.

[16]

Wang X, Dong LH, Li JT, Li XL, Ma XL, Zheng YF. Microstructure, mechanical property and corrosion behavior of interpenetrating (HA+β-TCP)/MgCa composite fabricated by suction casting. Mater. Sci. Eng. C, 2013, 33(7): 4266.

[17]

S. Dutta, K.B. Devi, S. Mandal, A. Mahato, S. Gupta, B. Kundu, V.K. Balla, and M. Roy, In vitro corrosion and cytocompatibility studies of hot press sintered magnesium-bioactive glass composite, Materialia, 5(2019), art. No. 100245.

[18]

Ghasali E, Bordbar-Khiabani A, Alizadeh M, Mozafari M, Niazmand M, Kazemzadeh H, Ebadzadeh T. Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process. Mater. Chem. Phys., 2019, 225, 331.

[19]

Cui ZQ, Zhang YK, Cheng YL, Gong DQ, Wang WX. Microstructure, mechanical, corrosion properties and cytotoxicity of beta calcium polyphosphate reinforced ZK61 magnesium alloy composite by spark plasma sintering. Mater. Sci. Eng. C, 2019, 99, 1035.

[20]

Zhang W, Tan LL, Ni DR, Chen JX, Zhao YC, Liu L, Shuai CJ, Yang K, Atrens A, Zhao MC. Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy. J. Mater. Sci. Technol., 2019, 35(5): 777.

[21]

Lei T, Tang W, Cai SH, Feng FF, Li NF. On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction. Corros. Sci., 2012, 54, 270.

[22]

Jiang WY, Wang JF, Yu WZ, Ma Y, Guo SF. In-situ formation of a gradient Mg2Si/Mg composite with good biocompatibility. Surf. Coat. Technol., 2019, 361, 255.

[23]

Xu R, Zhao MC, Zhao YC, Liu L, Liu C, Gao CD, Shuai CJ, Atrens A. Improved biodegradation resistance by grain refinement of novel antibacterial ZK30-Cu alloys produced via selective laser melting. Mater. Lett., 2019, 237, 253.

[24]

Shuai CJ, Liu L, Zhao MC, Feng P, Yang YW, Guo W, Gao CD, Yuan FL. Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique. J. Mater. Sci. Technol., 2018, 34(10): 1944.

[25]

Shuai CJ, Zhou YZ, Yang YW, Feng P, Liu L, He CX, Zhao MC, Yang S, Gao CD, Wu P. Biodegradation resistance and bioactivity of hydroxyapatite enhanced Mg-Zn composites via selective laser melting. Materials, 2017, 10(3): 307.

[26]

Abd El-Rahman SS. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacol. Res., 2003, 47(3): 189.

[27]

Rim KT, Koo KH, Park JS. Toxicological evaluations of rare earths and their health impacts to workers: A literature review. Saf. Health Work, 2013, 4(1): 12.

[28]

Gupta UC, Gupta SC. Sources and deficiency diseases of mineral nutrients in human health and nutrition: A review. Pedosphere, 2014, 24(1): 13.

[29]

E. Warensjö, L. Byberg, H. Melhus, R. Gedeborg, H. Mallmin, A. Wolk, and K. Michaelsson, Dietary calcium intake and risk of fracture and osteoporosis: Prospective longitudinal cohort study, BMJ, 342(2011), art. No. d1473.

[30]

Ren YJ, Huang JJ, Yang K, Zhang BC, Yao ZM, Wang H. Study of bio-corrosion of pure magnesium. Acta Metall. Sin., 2005, 41(11): 1228.

[31]

Makar GL, Kruger J. Corrosion of magnesium. Int. Mater. Rev., 1993, 38(3): 138.

[32]

Avedesian M, Baker H. ASM Specialty Handbook: Magnesium and Magnesium Alloys, 1999, Ohio, ASM International, 30.

[33]

Renkema KY, Alexander RT, Bindels RJ, Hoenderop JG. Calcium and phosphate homeostasis: concerted interplay of new regulators. Ann. Med., 2008, 40(2): 82.

[34]

Li ZJ, Gu XN, Lou SQ, Zheng YF. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29(10): 1329.

[35]

Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR, Ourdjini A, Medraj M, Daroonparvar M, Hamzah E. Mechanical and bio-corrosion properties of quaternary Mg-Ca-Mn-Zn alloys compared with binary Mg-Ca alloys. Mater. Des., 2014, 53, 283.

[36]

Koltygin AV, Bazhenov VE, Khasenova RS, Komissarov AA, Bazlov AI, Bautin VA. Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys. Int. J. Miner. Metall. Mater., 2019, 26(7): 858.

[37]

Cai SH, Lei T, Li NF, Feng FF. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Mater. Sci. Eng. C, 2012, 32(8): 2570.

[38]

Huan ZG, Leeflang MA, Zhou J, Fratila-Apachitei LE, Duszczyk J. In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. J. Mater. Sci. — Mater. Med., 2010, 21(9): 2623.

[39]

Zhang EL, He WW, Du H, Yang K. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content. Mater. Sci. Eng. A, 2008, 488(1–2): 102.

[40]

Sun Y, Zhang BP, Wang Y, Geng L, Jiao XH. Preparation and characterization of a new biomedical Mg-Zn-Ca alloy. Mater. Des., 2012, 34, 58.

[41]

Ma YZ, Yang CL, Liu YJ, Yuan FS, Liang SS, Li HX, Zhang JS. Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg-xZn-0.2Ca alloys. Int. J. Miner. Metall. Mater., 2019, 26(10): 1274.

[42]

Li HX, Qin SK, Ma YZ, Wang J, Liu YJ, Zhang JS. Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg-Zn-Ca alloys. Int. J. Miner. Metall. Mater., 2018, 25(7): 800.

[43]

Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol., 2011, 77(5): 1541.

[44]

Ren L, Xu L, Feng JW, Zhang Y, Yang K. In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis. J. Mater. Sci. — Mater. Med., 2012, 23(5): 1235.

[45]

Yan XD, Wan P, Tan LL, Zhao MC, Qin L. Corrosion and biological performance of biodegradable magnesium alloys mediated by low copper addition and processing. Mater. Sci. Eng. C, 2018, 93, 565.

[46]

Yan XD, Wan P, Tan LL, Zhao MC, Shuai CJ, Yang K. Influence of hybrid extrusion and solution treatment on the microstructure and degradation behavior of Mg-0.1Cu alloy. Mater. Sci. Eng. B, 2018, 229, 105.

[47]

Yan XD, Zhao MC, Yang Y, Tan LL, Zhao YC, Yin DF, Yang K, Atrens A. Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper. Corros. Sci., 2019, 156, 125.

[48]

Pennington JAT. Silicon in foods and diets. Food Addit. Contam., 1991, 8(1): 97.

[49]

Gu XN, Zheng YF, Cheng Y, Zhong SP, Xi TF. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30(4): 484.

[50]

Ben-Hamu G, Eliezer D, Shin KS. The role of Mg2Si on the corrosion behavior of wrought Mg-Zn-Mn alloy. Intermetallics, 2008, 16(7): 860.

[51]

Srinivasan A, Ningshen S, Kamachi Mudali U, Pillai UTS, Pai BC. Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy. Intermetallics, 2007, 15(12): 1511.

[52]

Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif. Tissue Int., 2001, 69(3): 121.

[53]

Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C. Incorporation and distribution of strontium in bone. Bone, 2001, 28(4): 446.

[54]

Seiler HG, Sigel H, Sigel A. Handbook on Toxicity of Inorganic Compounds, 1988, New York, Marcel Dekker

[55]

Gu XN, Xie XH, Li NN, Zheng YF, Qin L. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater., 2012, 8(6): 2360.

[56]

Zhao MC, Zhao YC, Yin DF, Wang S, Shangguan YM, Liu C, Tan LL, Shuai CJ, Yang K, Atrens A. Biodegradation behavior of coated as-extruded Mg-Sr alloy in simulated body fluid. Acta Metall. Sin., 2019, 32(10): 1195.

[57]

Hanzi AC, Gunde P, Schinhammer M, Uggowitzer PJ. On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid. Acta Biomater., 2009, 5(1): 162.

[58]

Carboneras M, Múnez CJ, Rodrigo P, Escalera MD, López MD, Otero E. Effect of Heat Treatment on the Corrosion Behaviour of a Mg-Y Alloy in Chloride Medium. Mater. Sci. Forum, 2010, 636–637, 491.

[59]

Zeller-Plumhoff B, Malich C, Kruger D, Campbell G, Wiese B, Galli S, Wennerberg A, Willumeit-Römer R, Wieland DCF. Analysis of the bone ultrastructure around biodegradable Mg-xGd implants using small angle X-ray scattering and X-ray diffraction. Acta Biomater., 2020, 101, 637.

[60]

Windhagen H, Radtke K, Weizbauer A, Diekmann J, Noll Y, Kreimeyer U, Schavan R, Stukenborg-Colsman C, Waizy H. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study. Biomed. Eng. Online, 2013, 12(1): 62.

[61]

R. Biber, J. Pauser, M. Gesslein, and H.J. Bail, Magnesium-based absorbable metal screws for intra-articular fracture fixation, Case Rep. Orthop., 2016(2016), art. No. 9673174.

[62]

Pramanik S, Agarwal AK, Rai KN, Garg A. Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int., 2007, 33(3): 419.

[63]

Driessens FC. Probable phase composition of the mineral in bone. Z. Naturforsch. C Biosci., 1980, 35(5–6): 357.

[64]

Kwon SH, Jun YK, Hong SH, Kim HE. Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders. J. Eur. Ceram. Soc., 2003, 23(7): 1039.

[65]

Fulmer MT, Ison IC, Hankermayer CR, Constantz BR, Ross J. Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials, 2002, 23(3): 751.

[66]

Edwards JT, Brunski JB, Higuchi HW. Mechanical and morphologic investigation of the tensile strength of a bone-hydroxyapatite interface. J. Biomed. Mater. Res., 1997, 36(4): 454.

[67]

Mróz W, Bombalska A, Burdyńska S, Jedyński M, Prokopiuk A, Budner B, Ślósarczyk A, Zima A, Menaszek E, Ścisłowska-Czarnecka A, Niedzielski K. Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture. J. Mol. Struct., 2010, 977(1–3): 145.

[68]

Cui ZQ, Li WJ, Cheng LX, Gong DQ, Cheng WL, Wang WX. Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering. Mater. Charact., 2019, 151, 620.

[69]

Liu DB, Xu GQ, Jamali SS, Zhao Y, Chen MF, Jurak T. Fabrication of biodegradable HA/Mg-Zn-Ca composites and the impact of heterogeneous microstructure on mechanical properties in vitro degradation and cytocompatibility. Bioelectrochemistry, 2019, 129, 106.

[70]

G. Parande, V. Manakari, S. Prasadh, D. Chauhan, S. Rahate, R. Wong, and M. Gupta, Strength retention, corrosion control and biocompatibility of Mg-Zn-Si/HA nanocomposites, J. Mech. Behav. Biomed. Mater., 103(2020), art. No. 103584.

[71]

Ryu HS, Youn HJ, Hong KS, Chang BS, Lee CK, Chung SS. An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials, 2002, 23(3): 909.

[72]

Ryu HS, Hong KS, Lee JK, Kim DJ, Lee JH, Chang BS, Lee DH, Lee CK, Chung SS. Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility. Biomaterials, 2004, 25(3): 393.

[73]

Liu DB, Zuo YB, Meng WY, Chen MF, Fan Z. Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology. Mater. Sci. Eng. C, 2012, 32(5): 1253.

[74]

Yu K, Chen LJ, Zhao J, Li SJ, Dai YL, Huang Q, Yu ZM. In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg-Zn composites. Acta Biomater., 2012, 8(7): 2845.

[75]

Yuan Q, Huang Y, Liu DB, Chen MF. Effects of solidification cooling rate on the corrosion resistance of a biodegradable β-TCP/Mg-Zn-Ca composite. Bioelectrochemistry, 2018, 124, 93.

[76]

Zheng HR, Li Z, You C, Liu DB, Chen MF. Effects of MgO modified β-TCP nanoparticles on the microstructure and properties of β-TCP/Mg-Zn-Zr composites. Bioact. Mater., 2017, 2(1): 1.

[77]

Zhang Y, Ai JN, Wang DG, Hong ZR, Li WH, Yokogawa Y. Dissolution properties of different compositions of biphasic calcium phosphate bimodal porous ceramics following immersion in simulated body fluid solution. Ceram. Int., 2013, 39(6): 6751.

[78]

Kannan S, Goetz-Neunhoeffer F, Neubauer J, Ferreira JMF. Ionic substitutions in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: structural analysis by rietveld refinement. J. Am. Ceram. Soc., 2007, 91(1): 1.

[79]

Ghosh SK, Nandi SK, Kundu B, Datta S, De DK, Roy SK, Basu D. In vivo response of porous hydroxyapatite and β-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J. Biomed. Mater. Res. Part B, 2008, 86B(1): 217.

[80]

Gu XN, Wang X, Li N, Li L, Zheng YF, Miao XG. Microstructure and characteristics of the metal-ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration. J. Biomed. Mater. Res. Part B, 2011, 99B(1): 127.

[81]

Miao XG, Tan DM, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater., 2008, 4(3): 638.

[82]

Kim HW, Kim HE, Knowles JC. Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials, 2004, 25(17): 3351.

[83]

Fathi MH, Mohammadi Zahrani E. Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite. J. Cryst. Growth, 2009, 311(5): 1392.

[84]

Cheng K, Weng WJ, Qu HB, Du PY, Shen G, Han GR, Yang J, Ferreira JMF. Sol-gel preparation and in vitro test of fluorapatite/hydroxyapatite films. J. Biomed. Mater. Res. Part B, 2004, 69B(1): 33.

[85]

Moreno EC, Kresak M, Zahradnik RT. Fluoridated hydroxyapatite solubility and caries formation. Nature, 1974, 247(5435): 64.

[86]

Kim HW, Kong YM, Bae CJ, Noh YJ, Kim HE. Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate. Biomaterials, 2004, 25(15): 2919.

[87]

Razavi M, Fathi MH, Meratian M. Bio-corrosion behavior of magnesium-fluorapatite nanocomposite for biomedical applications. Mater. Lett., 2010, 64(22): 2487.

[88]

Razavi M, Fathi MH, Meratian M. Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Mater. Sci. Eng. A, 2010, 527(26): 6938.

[89]

Dias AG, Lopes MA, Gibson IR, Santos JD. In vitro degradation studies of calcium phosphate glass ceramics prepared by controlled crystallization. J. Non-Cryst. Solids, 2003, 330(1–3): 81.

[90]

Qiu K, Wan CX, Zhao CS, Chen X, Tang CW, Chen YW. Fabrication and characterization of porous calcium polyphosphate scaffolds. J. Mater. Sci., 2006, 41(8): 2429.

[91]

Jackson LE, Kariuki BM, Smith ME, Barralet JE, Wright AJ. Synthesis and structure of a calcium polyphosphate with a unique criss-cross arrangement of helical phosphate chains. Chem. Mater., 2005, 17(18): 4642.

[92]

Lee YM, Seol YJ, Lim YT, Kim S, Han SB, Rhyu IC, Baek SH, Heo SJ, Choi JY, Klokkevold PR, Chung CP. Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices. J. Biomed. Mater. Res., 2001, 54(2): 216.

[93]

Waldman SD, Grynpas MD, Pilliar RM, Kandel RA. Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro. J. Biomed. Mater. Res., 2002, 62(3): 323.

[94]

Grynpas MD, Pilliar RM, Kandel RA, Renlund R, Filiaggi M, Dumitriu M. Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies. Biomaterials, 2002, 23(9): 2063.

[95]

Wang K, Chen FP, Liu CS, Rüssel C. The effect of polymeric chain-like structure on the degradation and cellular biocompatibility of calcium polyphosphate. Mater. Sci. Eng. C, 2008, 28(8): 1572.

[96]

Song W, Tian M, Chen F, Tian YF, Wan CX, Yu XX. The study on the degradation and mineralization mechanism of ion-doped calcium polyphosphate in vitro. J. Biomed. Mater. Res. Part B, 2009, 89B(2): 430.

[97]

Feng AL, Han Y. Mechanical and in vitro degradation behavior of ultrafine calcium polyphosphate reinforced magnesium-alloy composites. Mater. Des., 2011, 32(5): 2813.

[98]

Pietak A, Mahoney P, Dias GJ, Staiger MP. Bone-like matrix formation on magnesium and magnesium alloys. J. Mater. Sci. — Mater. Med., 2008, 19(1): 407.

[99]

Fei LS, Wang C, Xue Y, Lin KL, Chang J, Sun J. Osteogenic differentiation of osteoblasts induced by calcium silicate and calcium silicate/beta-tricalcium phosphate composite bioceramics. J. Biomed. Mater. Res. Part B, 2012, 100B(5): 1237.

[100]

Pietak AM, Reid JW, Stott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials, 2007, 28(28): 4023.

[101]

Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials, 2003, 24(25): 4609.

[102]

Kao CT, Huang TH, Chen YJ, Hung CJ, Lin CC, Shie MY. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement. Mater. Sci. Eng. C, 2014, 43, 126.

[103]

Xu SF, Lin KL, Wang Z, Chang J, Wang L, Lu JX, Ning CQ. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials, 2008, 29(17): 2588.

[104]

Huan ZG, Xu C, Ma B, Zhou J, Chang J. Substantial enhancement of corrosion resistance and bioactivity of magnesium by incorporating calcium silicate particles. RSC Adv., 2016, 6(53): 47897.

[105]

Wu CT, Chang J. Synthesis and in vitro bioactivity of bredigite powders. J. Biomater. Appl., 2007, 21(3): 251.

[106]

Yi DL, Wu CT, Ma B, Ji H, Zheng XB, Chang J. Bioactive bredigite coating with improved bonding strength, rapid apatite mineralization and excellent cytocompatibility. J. Biomater. Appl., 2014, 28(9): 1343.

[107]

Wu CT, Chang J, Wang JY, Ni SY, Zhai WY. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials, 2005, 26(16): 2925.

[108]

Dezfuli SN, Huan ZG, Mol A, Leeflang S, Chang J, Zhou J. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications. Mater. Sci. Eng. C, 2017, 79, 647.

[109]

Schrooten J, Helsen JA. Adhesion of bioactive glass coating to Ti6Al4V oral implant. Biomaterials, 2000, 21(14): 1461.

[110]

Sepulveda P, Jones JR, Hench LL. Bioactive sol-gel foams for tissue repair. J. Biomed. Mater. Res., 2002, 59(2): 340.

[111]

Vogel M, Voigt C, Gross UM, Müller-Mai CM. In vivo comparison of bioactive glass particles in rabbits. Biomaterials, 2001, 22(4): 357.

[112]

Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem. Biophys. Res. Commun., 2000, 276(2): 461.

[113]

Huan ZG, Leeflang S, Zhou J, Zhai WY, Chang J, Duszczyk J. In vitro degradation behavior and bioactivity of magnesium-Bioglass® composites for orthopedic applications. J. Biomed. Mater. Res. Part B, 2012, 100B(2): 437.

[114]

Lei T, Ouyang C, Tang W, Li LF, Zhou LS. Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process. Corros. Sci., 2010, 52(10): 3504.

[115]

Pereira D, Cachinho S, Ferro MC, Fernandes MHV. Surface behaviour of high MgO-containing glasses of the Si-Ca-P-Mg system in a synthetic physiological fluid. J. Eur. Ceram. Soc., 2004, 24(15–16): 3693.

[116]

Richards R, Li WF, Decker S, Davidson C, Koper O, Zaikovski V, Volodin A, Rieker T, Klabunde KJ. Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials. J. Am. Chem. Soc., 2000, 122(20): 4921.

[117]

Fontanella J, Andeen C, Schuele D. Low-frequency dielectric constants of α-quartz, sapphire, MgF2, and MgO. J. Appl. Phys., 1974, 45(7): 2852.

[118]

Goh CS, Gupta M, Wei J, Lee LC. Characterization of high performance Mg/MgO nanocomposites. J. Compos. Mater., 2007, 41(19): 2325.

[119]

Lin GY, Liu DD, Chen MF, You C, Li Z, Wang Y, Li W. Preparation and characterization of biodegradable Mg-Zn-Ca/MgO nanocomposites for biomedical applications. Mater. Charact., 2018, 144, 120.

[120]

Schrand AM, Johnson J, Dai LM, Hussain SM, Schlager JJ, Zhu L, Hong YL, Ōsawa E. Webster T. Cytotoxicity and genotoxicity of carbon nanomaterials. Safety of Nanoparticles, 2009, New York, Springer, 159.

[121]

Chłopek J, Czajkowska B, Szaraniec B, Frackowiak E, Szostak K, Béguin F. In vitro studies of carbon nanotubes biocompatibility. Carbon, 2006, 44(6): 1106.

[122]

Harikrishnan G, Umasankar Patro T, Khakhar DV. Reticulated vitreous carbon from polyurethane foam-clay composites. Carbon, 2007, 45(3): 531.

[123]

Barnes LM, Phillips GJ, Davies JG, Lloyd AW, Cheek E, Tennison SR, Rawlinson AP, Kozynchenko OP, Mikhalovsky SV. The cytotoxicity of highly porous medical carbon adsorbents. Carbon, 2009, 47(8): 1887.

[124]

Shi XF, Sitharaman B, Pham QP, Liang F, Wu K, Edward Billups W, Wilson LJ, Mikos AG. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials, 2007, 28(28): 4078.

[125]

Turgut G, Eksilioglu A, Gencay N, Gonen E, Hekim N, Yardim MF, Sakiz D, Ekinci E. Pore structure engineering for carbon foams as possible bone implant material. J. Biomed. Mater. Res. Part A, 2008, 85A(3): 588.

[126]

Wang X, Dong LH, Ma XL, Zheng YF. Microstructure, mechanical property and corrosion behaviors of interpenetrating C/Mg-Zn-Mn composite fabricated by suction casting. Mater. Sci. Eng. C, 2013, 33(2): 618.

[127]

Zhang QW, Mochalin VN, Neitzel I, Knoke IY, Han JJ, Klug CA, Zhou JG, Lelkes PI, Gogotsi Y. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials, 2011, 32(1): 87.

[128]

Schrand AM, Huang HJ, Carlson C, Schlager JJ, Omacr SE, Hussain SM, Dai LM. Are diamond nanoparticles cytotoxic?. J. Phys. Chem. B, 2007, 111(1): 2.

[129]

Schrand AM, Hens SAC, Shenderova OA. Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci., 2009, 34(1–2): 18.

[130]

Yuan Y, Wang X, Jia G, Liu JH, Wang TC, Gu YQ, Yang ST, Zhen S, Wang HF, Liu YF. Pulmonary toxicity and translocation of nanodiamonds in mice. Diamond Relat. Mater., 2010, 19(4): 291.

[131]

Mohan N, Chen CS, Hsieh HH, Wu YC, Chang HC. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett., 2010, 10(9): 3692.

[132]

E.K. Chow, X.Q. Zhang, M. Chen, R. Lam, E. Robinson, H.J. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment, Sci. Transl. Med., 3(2011), No. 73, art. No. 73ra21

[133]

L. Pramatarova, R. Dimitrova, E. Pecheva, T. Spassov, and M. Dimitrova, Peculiarities of hydroxyapatite/nanodiamond composites as novel implants, J. Phys. Conf. Ser., 93(2007), No. 1, art. No. 012049.

[134]

Zhang QW, Mochalin VN, Neitzel I, Hazeli K, Niu JJ, Kontsos A, Zhou JG, Lelkes PI, Gogotsi Y. Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials, 2012, 33(20): 5067.

[135]

H.B. Gong, B. Anasori, C.R. Dennison, K. Wang, E. C. Kumbur, R. Strich, and J.G. Zhou, Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodiamond composites for implant application, J. Mater. Sci. -Mater. Med., 26(2015), No. 2, art. No. 110.

[136]

Han W, Wu ZN, Li Y, Wang YY. Graphene family nanomaterials (GFNs)—Promising materials for antimicrobial coating and film: A review. Chem. Eng. J., 2019, 358, 1022.

[137]

A. Saberi, H.R. Bakhsheshi-Rad, E. Karamian, M. Kasiri-Asgarani, and H. Ghomi, Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties, J. Alloys Compd., 821(2020), art. No. 153379.

[138]

J.X. Yang, G.L. Koons, G. Cheng, L.L. Zhao, A.G. Mikos, and F.Z. Cui, A review on the exploitation of biodegradable magnesium-based composites for medical applications, Biomed. Mater., 13(2018), No. 2, art No. 022001.

[139]

Campo RD, Savoini B, Muñoz A, Monge MA, Garcés G. Mechanical properties and corrosion behavior of Mg-HAP composites. J. Mech. Behav. Biomed. Mater., 2014, 39, 238.

[140]

Garcés G, Rodríguez M, Pérez P, Adeva P. Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg-Y2O3 composites. Mater. Sci. Eng. A, 2006, 419(1–2): 357.

[141]

Khalil KA, Sherif ESM, Almajid AA. Corrosion passivation in simulated body fluid of magnesium/hydroxyapatite nanocomposites sintered by high frequency induction heating. Int. J. Electrochem. Sci., 2011, 6(12): 6184.

[142]

Gu XN, Zhou WR, Zheng YF, Dong LM, Xi YL, Chai DL. Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Mater. Sci. Eng. C, 2010, 30(6): 827.

[143]

Su YC, Lu DY, Lu CJ, Lian JS, Li GY. Preparation and characterization of biodegradable hy-droxyapatite reinforced magnesium composites. Rare Met. Mater. Eng., 2014, 43(s1): 29.

[144]

Khanra AK, Jung HC, Hong KS, Shin KS. Comparative property study on extruded Mg-HAP and ZM61-HAP composites. Mater. Sci. Eng. A, 2010, 527(23): 6283.

[145]

Khanra AK, Jung HC, Yu SH, Hong KS, Shin KS. Microstructure and mechanical properties of Mg-HAP composites. Bull. Mater. Sci., 2010, 33(1): 43.

[146]

Khalajabadi SZ, Abdul Kadir MR, Izman S, Ebrahimi-Kahrizsangi R. Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications. Mater. Des., 2015, 88, 1223.

[147]

Jaiswal S, Kumar RM, Gupta P, Kumaraswamy M, Roy P, Lahiri D. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories. J. Mech. Behav. Biomed. Mater., 2018, 78, 442.

[148]

He SY, Sun Y, Chen MF, Liu DB, Ye XY. Microstructure and properties of biodegradable β-TCP reinforced Mg-Zn-Zr composites. Trans. Nonferrous Met. Soc. China, 2011, 21(4): 814.

[149]

Prakash C, Singh S, Verma K, Sidhu SS, Singh S. Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications. Vacuum, 2018, 155, 578.

[150]

Huang Y, Liu DB, Anguilano L, You C, Chen MF. Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1beta-TCP composite. Mater. Sci. Eng. C, 2015, 54, 120.

[151]

Razavi M, Fathi MH, Meratian M. Fabrication and characterization of magnesium-fluorapatite nanocomposite for biomedical applications. Mater. Charact., 2010, 61(12): 1363.

[152]

Sunil BR, Kumar TSS, Chakkingal U, Nandakumar V, Doble M. Friction stir processing of magnesium-nanohydroxyapatite composites with controlled in vitro degradation behavior. Mater. Sci. Eng. C, 2014, 39, 315.

[153]

Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27(7): 1013.

[154]

Atrens A, Johnston S, Shi ZM, Dargusch MS. Viewpoint-understanding Mg corrosion in the body for biodegradable medical implants. Scripta Mater., 2018, 154, 92.

[155]

Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, Beck S, Weinberg AM. Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomater., 2011, 7(1): 432.

[156]

Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res., 2002, 62(2): 175.

[157]

Lu SK, Yeh HI, Tian TY, Lee WH. Degradation of magnesium alloys in biological solutions and reduced phenotypic expression of endothelial cell grown on these alloys. 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, IFMBE Proceedings, 2007, 15, 98. Springer, Berlin

[158]

C.K. Seal, K. Vince, and M.A. Hodgson, Biodegradable surgical implants based on magnesium alloys—A review of current research, IOP Conf. Ser.: Mater. Sci. Eng., 4(2009), No. 1, art. No. 012011.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/