Anodized metal oxide nanostructures for photoelectrochemical water splitting

Ying-zhi Chen , Dong-jian Jiang , Zheng-qi Gong , Jing-yuan Li , Lu-ning Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (5) : 584 -601.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (5) : 584 -601. DOI: 10.1007/s12613-020-1983-6
Invited Review

Anodized metal oxide nanostructures for photoelectrochemical water splitting

Author information +
History +
PDF

Abstract

Photoelectrochemical (PEC) water splitting offers the capability of harvesting, storing, and converting solar energy into clean and sustainable hydrogen energy. Metal oxides are appealing photoelectrode materials because of their easy manufacturing and relatively high stability. In particular, metal oxides prepared by electrochemical anodization are typical of ordered nanostructures, which are beneficial for light harvesting, charge transfer and transport, and the adsorption and desorption of reactive species due to their high specific surface area and rich channels. However, bare anodic oxides still suffer from low charge separation and sunlight absorption efficiencies. Accordingly, many strategies of modifying anodic oxides have been explored and investigated. In this review, we attempt to summarize the recent advances in the rational design and modifications of these oxides from processes before, during, and after anodization. Rational design strategies are thoroughly addressed for each part with an aim to boost overall PEC performance. The ongoing efforts and challenges for future development of practical PEC electrodes are also presented.

Keywords

photoelectrochemical water splitting / photoelectrode / metal oxide / anodization / nanostructure / structural engineering

Cite this article

Download citation ▾
Ying-zhi Chen, Dong-jian Jiang, Zheng-qi Gong, Jing-yuan Li, Lu-ning Wang. Anodized metal oxide nanostructures for photoelectrochemical water splitting. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(5): 584-601 DOI:10.1007/s12613-020-1983-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao RQ, Sun Q, Fang Z, Li GT, Jia MZ, Hou XM. Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation. Int. J. Miner. Metall. Mater., 2018, 25(1): 73.

[2]

Esmaili H, Kotobi A, Sheibani S, Rashchi F. Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light. Int. J. Miner. Metall. Mater., 2018, 25(2): 244.

[3]

Li SN, Ma RX, Wang CY. Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp. Int. J. Miner. Metall. Mater., 2018, 25(3): 310.

[4]

Kullaiah R, Elias L, Hegde AC. Effect of TiO2 nanoparticles on hydrogen evolution reaction activity of Ni coatings. Int. J. Miner. Metall. Mater., 2018, 25(4): 472.

[5]

Park HG, Holt JK. Recent advances in nanoelectrode architecture for photochemical hydrogen production. Energy Environ. Sci., 2010, 3(8): 1028.

[6]

Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen ZB, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang HL, Miller E, Jaramillo TF. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci., 2013, 6(7): 1983.

[7]

A. Mehta, A. Mishra, S. Basu, N.P. Shetti, K.R. Reddy, T.A. Saleh, and T.M. Aminabhavi, Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production—A review, J. Environ. Manage., 250(2019), art. No. 109486.

[8]

Wang Z, Roberts RR, Naterer GF, Gabriel KS. Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies. Int. J. Hydrogen Energy, 2012, 37(21): 16287.

[9]

Y. Yang, S.W. Niu, D.D. Han, T.Y. Liu, G.M. Wang, and Y. Li, Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting, Adv. Energy Mater., 7(2017), No. 19, art. No. 1700555.

[10]

Reddy CV, Reddy IN, Reddy KR, Jaesool S, Yoo K. Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment. Electrochim. Acta, 2019, 317, 416.

[11]

Reddy CV, Reddy IN, Akkinepally B, Harish VVN, Reddy KR, Jaesool S. Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation. Ceram. Int., 2019, 45(12): 15298.

[12]

S.C. Huang and C.Y. Lin, Electrosynthesis, activation, and applications of nickel-iron oxyhydroxide in (photo-)electrochemical water splitting at near neutral condition, Electrochim. Acta, 321(2019), art. No. 134667.

[13]

Gaudy YK, Haussener S. Rapid performance optimization method for photoelectrodes. J. Phys. Chem. C, 2019, 123(36): 21838.

[14]

Basavarajappa PS, Seethya BNH, Ganganagappa N, Eshwaraswamy KB, Kakarla RR. Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles. ChemistrySelect, 2018, 3(31): 9025.

[15]

Chen RZ, Zhen C, Yang YQ, Sun XD, Irvine JTS, Wang LZ, Liu G, Cheng HM. Boosting photoelectrochemical water splitting performance of Ta3N5 nanorod array photoanodes by forming a dual co-catalyst shell. Nano Energy, 2019, 59, 683.

[16]

Higashi T, Nishiyama H, Suzuki Y, Sasaki Y, Hisatomi T, Katayama M, Minegishi T, Seki K, Yamada T, Domen K. Transparent Ta3N5 photoanodes for efficient oxygen evolution toward the development of tandem cells. Angew. Chem. Int. Ed., 2019, 58(8): 2300.

[17]

Reddy KR, Reddy CV, Nadagouda MN, Shetti NP, Jaesool S, Aminabhavi TM. Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: Synthesis methods, properties and photocatalytic applications. J. Environ. Manage., 2019, 238, 25.

[18]

Mishra A, Mehta A, Basu S, Shetti NP, Reddy KR, Aminabhavi TM. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review. Carbon, 2019, 149, 693.

[19]

Seo J, Nakabayashi M, Hisatomi T, Shibata N, Minegishi T, Domen K. Solar-driven water splitting over a BaTaO2N photoanode enhanced by annealing in argon. ACS Appl. Energy Mater., 2019, 2(8): 5777.

[20]

Wang YW, Jin S, Pan GX, Li ZX, Chen L, Liu G, Xu XX. Zr doped mesoporous LaTaON2 for efficient photocatalytic water splitting. J. Mater. Chem. A, 2019, 7(10): 5702.

[21]

Wang L, Qian YT, Du JM, Wu HR, Wang Z, Li G, Li KD, Wang WM, Kang DJ. Facile synthesis of cactus-shaped CdS–Cu9S5 heterostructure on copper foam with enhanced photoelectrochemical performance. Appl. Surf. Sci., 2019, 492, 849.

[22]

Chandrasekaran S, Yao L, Deng LB, Bowen C, Zhang Y, Chen SM, Lin ZQ, Peng F, Zhang PX. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev., 2019, 48(15): 4178.

[23]

Ge J, Yu Y, Yan YF. Earth-abundant trigonal BaCu2Sn (SexS1−x)4 (x = 0–0.55) thin films with tunable band gaps for solar water splitting. J. Mater. Chem. A, 2016, 4(48): 18885.

[24]

Lu YR, Yin PF, Mao J, Ning MJ, Zhou YZ, Dong CK, Ling T, Du XW. A stable inverse opal structure of cadmium chalcogenide for efficient water splitting. J. Mater. Chem. A, 2015, 3(36): 18521.

[25]

V. Andrei, R.L.Z. Hoye, M. Crespo-Quesada, M. Bajada, S. Ahmad, M. De Volder, R. Friend, and E. Reisner, Scalable triple cation mixed halide perovskite–BiVO4 tandems for bias-free water splitting, Adv. Energy Mater., 8(2018), No. 25, art. No. 1801403.

[26]

Katsube R, Kazumi K, Tadokoro T, Nose Y. Reactive epitaxial formation of a Mg–P–Zn ternary semiconductor in Mg/Zn3P2 solar cells. ACS Appl. Mater. Interfaces, 2018, 10(42): 36102.

[27]

Q. Li, M.J. Zheng, B. Zhang, C.Q. Zhu, F.Z. Wang, J.N. Song, M. Zhong, L. Ma, and W.Z. Shen, Inp nanopore arrays for photoelectrochemical hydrogen generation, Nanotechnology, 27(2016), No. 7, art. No. 075704.

[28]

Osterloh FE. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev., 2013, 42(6): 2294.

[29]

Qian F, Wang GM, Li Y. Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Lett., 2010, 10(11): 4686.

[30]

Wang BS, Li RY, Zhang ZY, Zhang WW, Yan XL, Wu XL, Cheng GA, Zheng RT. Novel Au/Cu2O multi-shelled porous heterostructures for enhanced efficiency of photoelectrochemical water splitting. J. Mater. Chem. A, 2017, 5(27): 14415.

[31]

Wang ZW, Li XL, Tan CK, Qian C, Grimsdale AC, Tok AIY. Highly porous SnO2 nanosheet arrays sandwiched within TiO2 and CdS quantum dots for efficient photoelectrochemical water splitting. Appl. Surf. Sci., 2019, 470, 800.

[32]

Cao Q, Yu J, Yuan KP, Zhong M, Delaunay JJ. Facile and large-area preparation of porous Ag3PO4 photoanodes for enhanced photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces, 2017, 9(23): 19507.

[33]

Haque EY, Yamauchi Y, Malgras V, Reddy KR, Yi JW, Hossain MSA, Kim J. Nanoarchitectured graphene-organic frameworks (GOFs): Synthetic strategies, properties, and applications. Chem. Asian J., 2018, 13(23): 3561.

[34]

Shinde PS, Mahadik MA, Lee SY, Ryu J, Choi SH, Jang JS. Surfactant and TiO2 underlayer derived porous hematite nanoball array photoanode for enhanced photoelectrochemical water oxidation. Chem. Eng. J., 2017, 320, 81.

[35]

Li Z, Shi L, Franklin D, Koul S, Kushima A, Yang Y. Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays. Nano Energy, 2018, 51, 400.

[36]

Hu CY, Chu K, Zhao YH, Teoh WY. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films. ACS Appl. Mater. Interfaces, 2014, 6(21): 18558.

[37]

X.C. Dai, S. Hou, M.H. Huang, Y.B. Li, T. Li, and F.X. Xiao, Electrochemically anodized one-dimensional semiconductors: A fruitful platform for solar energy conversion, J. Phys. Energy, 1(2019), art. No. 022002.

[38]

He YL, Xu RD, He SW, Chen HS, Li K, Zhu Y, Shen QF. Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution. Int. J. Miner. Metall. Mater., 2018, 25(3): 288.

[39]

Lv SH, Wang J. The technical support of nanoart: Anodization process. Anti-Corros. Methods Mater., 2019, 66(2): 242.

[40]

Huang MC, Wang TH, Wu BJ, Lin JC, Wu CC. Anodized ZnO nanostructures for photoelectrochemical water splitting. Appl. Surf. Sci., 2016, 360, 442.

[41]

Li YK, Yu HM, Zhang CK, Song W, Li GF, Shao ZG, Yi BL. Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrochim. Acta, 2013, 107, 313.

[42]

Sánchez-Tovar R, Fernández-Domene RM, García-García DM, García-Antón J. Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization. J. Power Sources, 2015, 286, 224.

[43]

Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interface Anal., 1999, 27(7): 629.

[44]

Qiu P, Yang HF, Song Y, Yang LJ, Lv LJ, Zhao X, Ge L, Chen CF. Potent and environmental-friendly Lcysteine @ Fe2O3 nanostructure for photoelectrochemical water splitting. Electrochim. Acta, 2018, 259, 86.

[45]

Apolinário A, Lopes T, Costa C, Araújo JP, Mendes AM. Multilayered WO3 nanoplatelets for efficient photoelectrochemical water splitting: The role of the annealing ramp. ACS Appl. Energy Mater., 2019, 2(2): 1040.

[46]

Gonçalves RV, Wender H, Migowski P, Feil AF, Eberhardt D, Boita J, Khan S, Machado G, Dupont J, Teixeira SR. Photochemical hydrogen production of Ta2O5 nanotubes decorated with NiO nanoparticles by modified sputtering deposition. J. Phys. Chem. C, 2017, 121(11): 5855.

[47]

John S, Vadla SS, Roy SC. High photoelectrochemical activity of CuO nanoflakes grown on Cu foil. Electrochim. Acta, 2019, 319, 390.

[48]

Sápi A, Varga A, Samu GF, Dobó D, Juhász KL, Takács B, Varga E, Kukovecz Á, Kónya Z, Janáky C. Photoelectrochemistry by design: Tailoring the nanoscale structure of Pt/NiO composites leads to enhanced photoelectrochemical hydrogen evolution performance. J. Phys. Chem. C, 2017, 121(22): 12148.

[49]

Sivula K, Le Formal F, Grätzel M. Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem, 2011, 4(4): 432.

[50]

Lee CY, Wang L, Kado Y, Kirchgeorg R, Schmuki P. Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting. Electrochem. Commun., 2013, 34, 308.

[51]

Wan YQ, Xu AN, Dong CF, He C, Xiao K, Tian YW, Li XG. Co/Mn co-doped TiO2 nanotube arrays for enhanced photoelectrochemical properties: Experimental and DFT investigations. J. Mater. Sci., 2018, 53(14): 9988.

[52]

Chitrada K, Raja KS, Rodriguez D, Chidambaram D. Photoelectrochemical behavior of nanoporous oxide of FeNdB alloy. J. Electrochem. Soc., 2015, 162(4): H220.

[53]

Li T, Ding DY, Dong ZB, Ning CQ. Photoelectrochemical water splitting properties of Ti–Ni–Si–O nanostructures on Ti–Ni–Si alloy. Nanomaterials, 2017, 7(11): 359.

[54]

Zhang XF, Zhang BY, Luo YP, Lv XW, Shen Y. Phosphate modified N/Si co-doped rutile TiO2 nanorods for photoelectrochemical water oxidation. Appl. Surf. Sci., 2017, 391, 288.

[55]

Liu SH, Yang LX, Xu SH, Luo SL, Cai QY. Photocatalytic activities of C–N-doped TiO2 nanotube array/carbon nanorod composite. Electrochem. Commun., 2009, 11(9): 1748.

[56]

Sun QN, Peng YP, Chen HL, Chang KL, Qiu YN, Lai SW. Photoelectrochemical oxidation of ibuprofen via Cu2O-doped TiO2 nanotube arrays. J. Hazard. Mater., 2016, 319, 121.

[57]

Rani BJ, Praveenkumar M, Ravichandran S, Ganesh V, Guduru RK, Ravi G, Yuvakkumar R. Ultrafine Mdoped TiO2 (M = Fe, Ce, La) nanosphere photoanodes for photoelectrochemical water-splitting applications. Mater. Charact., 2019, 152, 188.

[58]

Yin YC, Zhang XW, Sun CH. Transition-metal-doped Fe2O3 nanoparticles for oxygen evolution reaction. Prog. Nat. Sci. Mater. Int., 2018, 28(4): 430.

[59]

Huang MC, Chang WS, Lin JC, Chang YH, Wu CC. Magnetron sputtering process of carbon-doped α-Fe2O3 thin films for photoelectrochemical water splitting. J. Alloys Compd., 2015, 636, 176.

[60]

Bu XB, Gao YX, Zhang SH, Tian Y. Amorphous cerium phosphate on P-doped Fe2O3 nanosheets for efficient photoelectrochemical water oxidation. Chem. Eng. J., 2019, 355, 910.

[61]

Sreedhar A, Reddy IN, Hoai Ta QT, Namgung G, Cho E, Noh JS. Facile growth of novel morphology correlated Ag/Co-doped ZnO nanowire/flake-like composites for superior photoelectrochemical water splitting activity. Ceram. Int., 2019, 45(6): 6985.

[62]

Wang SB, Zhang XW, Li S, Fang Y, Pan L, Zou JJ. C-doped ZnO ball-in-ball hollow microspheres for efficient photocatalytic and photoelectrochemical applications. J. Hazard. Mater., 2017, 331, 235.

[63]

Kalanur SS, Yoo IH, Seo H. Fundamental investigation of Ti doped WO3 photoanode and their influence on photoelectrochemical water splitting activity. Electrochim. Acta, 2017, 254, 348.

[64]

Liu Y, Li J, Li WZ, Yang YH, Li YM, Chen QY. Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping. J. Phys. Chem. C, 2015, 119(27): 14834.

[65]

Vishwakarma AK, Tripathi P, Srivastava A, Sinha ASK, Srivastava ON. Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. Int. J. Hydrogen Energy, 2017, 42(36): 22677.

[66]

Dong ZB, Ding DY, Li T, Ning CQ. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation. Appl. Surf. Sci., 2018, 436, 125.

[67]

Kim D, Fujimoto S, Schmuki P, Tsuchiya H. Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys. Electrochem. Commun., 2008, 10(6): 910.

[68]

Mollavali M, Falamaki C, Rohani S. Efficient light harvesting by NiS/CdS/ZnS NPs incorporated in C, N-co-doped-TiO2 nanotube arrays as visible-light sensitive multilayer photoanode for solar applications. Int. J. Hydrogen Energy, 2018, 43(19): 9259.

[69]

Szkoda M, Siuzdak K, Lisowska-Oleksiak A, Karczewski J, Ryl J. Facile preparation of extremely photoactive borondoped TiO2 nanotubes arrays. Electrochem. Commun., 2015, 60, 212.

[70]

Parnicka P, Mazierski P, Lisowski W, Klimczuk T, Nadolna J, Zaleska-Medynska A. A new simple approach to prepare rare-earth metals-modified TiO2 nanotube arrays photoactive under visible light: Surface properties and mechanism investigation. Results Phys., 2019, 12, 412.

[71]

Wang ML, Wang XX, Lin J, Ning XW, Yang XJ, Zhang XH, Zhao JL. Preparation and photoluminescence properties of Eu3+-doped ZrO2 nanotube arrays. Ceram. Int., 2015, 41(7): 8444.

[72]

Xia MH, Huang LL, Zhang YB, Wang YQ. Enhanced photocatalytic activity of La3+-doped TiO2 nanotubes with full wave-band absorption. J. Electron. Mater., 2018, 47(9): 5291.

[73]

Altomare M, Lee K, Killian MS, Selli E, Schmuki P. Ta-doped TiO2 nanotubes for enhanced solar-light photoelectrochemical water splitting. Chem. Eur. J., 2013, 19(19): 5841.

[74]

Das C, Roy P, Yang M, Jha H, Schmuki P. Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. Nanoscale, 2011, 3(8): 3094.

[75]

Dong ZB, Ding DY, Li T, Ning CQ. Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting. Appl. Surf. Sci., 2018, 443, 321.

[76]

Zhao JL, Wang XX, Kang YR, Xu XW, Li YX. Photoelectrochemical activities of W-doped titania nanotube arrays fabricated by anodization. IEEE Photonics Technol. Lett., 2008, 20(14): 1213.

[77]

Yu JD, Wu Z, Gong C, Xiao W, Sun L, Lin CJ. Fe3+-doped TiO2 nanotube arrays on Ti–Fe alloys for enhanced photoelectrocatalytic activity. Nanomaterials, 2016, 6(6): 107.

[78]

Zaffora A, Santamaria M, Di Franco F, Habazaki H, Di Quarto F. Photoelectrochemical evidence of nitrogen incorporation during anodizing sputtering-deposited Al–Ta alloys. Phys. Chem. Chem. Phys., 2016, 18(1): 351.

[79]

Mor GK, Prakasam HE, Varghese OK, Shankar K, Grimes CA. Vertically oriented Ti–Fe–O nanotube array films: Toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett., 2007, 7(8): 2356.

[80]

Mor GK, Varghese OK, Wilke RHT, Sharma S, Shankar K, Latempa TJ, Choi KS, Grimes CA. P-type Cu–Ti–O nanotube arrays and their use in self-biased hetero-junction photoelectrochemical diodes for hydrogen generation. Nano Lett., 2008, 8(7): 1906.

[81]

Oliveira NTC, Guastaldi AC, Piazza S, Sunseri C. Photo-electrochemical investigation of anodic oxide films on cast Ti–Mo alloys. I. Anodic behaviour and effect of alloy composition. Electrochim. Acta, 2009, 54(5): 1395.

[82]

Roy P, Das C, Lee K, Hahn R, Ruff T, Moll M, Schmuki P. Oxide nanotubes on Ti–Ru alloys: Strongly enhanced and stable photoelectrochemical activity for water splitting. J. Am. Chem. Soc., 2011, 133(15): 5629.

[83]

Cottineau T, Béalu N, Gross PA, Pronkin SN, Keller N, Savinova ER, Keller V. One step synthesis of niobium doped titania nanotube arrays to form (N, Nb) co-doped TiO2 with high visible light photoelectrochemical activity. J. Mater. Chem. A, 2013, 1(6): 2151.

[84]

Mollavali M, Falamaki C, Rohani S. Preparation of multiple-doped TiO2 nanotube arrays with nitrogen, carbon and nickel with enhanced visible light photoelectrochemical activity via single-step anodization. Int. J. Hydrogen Energy, 2015, 40(36): 12239.

[85]

Ma XY, Sun ZR, Hu X. Synthesis of tin and molybdenum co-doped TiO2 nanotube arrays for the photoelectrocatalytic oxidation of phenol in aqueous solution. Mater. Sci. Semicond. Process., 2018, 85, 150.

[86]

Yoo H, Choi YW, Choi J. Ruthenium oxide-doped TiO2 nanotubes by single-step anodization for water-oxidation applications. ChemCatChem, 2015, 7(4): 643.

[87]

Ali H, Ismail N, Mekewi M, Hengazy A. Facile one-step process for synthesis of vertically aligned cobalt oxide doped TiO2 nanotube arrays for solar energy conversion. J. Solid State Electrochem., 2015, 19(10): 3019.

[88]

Yoo H, Oh K, Lee YR, Row KH, Lee G, Choi J. Simultaneous co-doping of RuO2 and IrO2 into anodic TiO2 nanotubes: A binary catalyst for electrochemical water splitting. Int. J. Hydrogen Energy, 2017, 42(10): 6657.

[89]

Choi YW, Kim S, Seong M, Yoo H, Choi J. NH4-doped anodic WO3 prepared through anodization and subsequent NH4OH treatment for water splitting. Appl. Surf. Sci., 2015, 324, 414.

[90]

Bemana H, Rashid-Nadimi S. Effect of sulfur doping on photoelectrochemical performance of hematite. Electrochim. Acta, 2017, 229, 396.

[91]

Chen YZ, Li AX, Li Q, Hou XM, Wang LN, Huang ZH. Facile fabrication of three-dimensional interconnected nanoporous N-TiO2 for efficient photoelectrochemical water splitting. J. Mater. Sci. Technol., 2018, 34(6): 955.

[92]

Georgieva J, Valova E, Armyanov S, Tatchev D, Sotiropoulos S, Avramova I, Dimitrova N, Hubin A, Steenhaut O. A simple preparation method and characterization of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance. Appl. Surf. Sci., 2017, 413, 284.

[93]

Liu YY, Li Y, Li WZ, Han S, Liu CJ. Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light. Appl. Surf. Sci., 2012, 258(12): 5038.

[94]

Ding D, Zhou B, Liu SR, Zhu GJ, Meng XW, Yang JD, Fu WY, Yang HB. A facile approach for photoelectrochemical performance enhancement of CdS QD-sensitized TiO2 via decorating {001} facet-exposed nano-polyhedrons onto nanotubes. RSC Adv., 2017, 7(59): 36902.

[95]

Wang GM, Yang XY, Qian F, Zhang JZ, Li Y. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett., 2010, 10(3): 1088.

[96]

Liu CJ, Yang YH, Li WZ, Li J, Li YM, Shi QL, Chen QY. Highly efficient photoelectrochemical hydrogen generation using ZnxBi2S3+x sensitized platelike WO3 photoelectrodes. ACS Appl. Mater. Interfaces, 2015, 7(20): 10763.

[97]

Zhu YM, Wang RL, Zhang WP, Ge HY, Li L. CdS and PbS nanoparticles co-sensitized TiO2 nanotube arrays and their enhanced photoelectrochemical property. Appl. Surf. Sci., 2014, 315, 149.

[98]

Xin YM, Li ZZ, Wu WL, Fu BH, Zhang ZH. Pyrite FeS2 sensitized TiO2 nanotube photoanode for boosting near-infrared light photoelectrochemical water splitting. ACS Sustainable Chem. Eng., 2016, 4(12): 6659.

[99]

Sekizawa K, Sato S, Arai T, Morikawa T. Solar-driven photocatalytic CO2 reduction in water utilizing a ruthenium complex catalyst on p-type Fe2O3 with a multiheterojunction. ACS Catal., 2018, 8(2): 1405.

[100]

Ronconi F, Syrgiannis Z, Bonasera A, Prato M, Argazzi R, Caramori S, Cristino V, Bignozzi CA. Modification of nanocrystalline WO3 with a dicationic perylene bisimide: Applications to molecular level solar water splitting. J. Am. Chem. Soc., 2015, 137(14): 4630.

[101]

Yamamoto M, Wang L, Li FS, Fukushima T, Tanaka K, Sun LC, Imahori H. Visible light-driven water oxidation using a covalently-linked molecular catalyst-sensitizer dyad assembled on a TiO2 electrode. Chem. Sci., 2016, 7(2): 1430.

[102]

Pang AY, Xia LC, Luo HY, Li YF, Wei MD. Highly efficient indoline dyes co-sensitized solar cells composed of titania nanorods. Electrochim. Acta, 2013, 94, 92.

[103]

Pastore M, De Angelis F. First-principles modeling of a dye-sensitized TiO2/IrO2 photoanode for water oxidation. J. Am. Chem. Soc., 2015, 137(17): 5798.

[104]

Qiu YC, Pan ZH, Chen HN, Ye DQ, Lin G, Fan ZY, Yang SH. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Sci. Bull., 2019, 64(18): 1348.

[105]

C.V. Reddy, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, and D.D. Dionysiou, Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting–A review, Int. J. Hydrogen Energy, 2019, https://doi.org/10.1016/j.ijhydene.2019.02.109.

[106]

Liu HB, Xu JL, Li YJ, Li YL. Aggregate nanostructures of organic molecular materials. Acc. Chem. Res., 2010, 43(12): 1496.

[107]

Weickert J, Dunbar RB, Hesse HC, Wiedemann W, Schmidt-Mende L. Nanostructured organic and hybrid solar cells. Adv. Mater., 2011, 23(16): 1810.

[108]

Agranovich VM, Gartstein YN, Litinskaya M. Hybrid resonant organic–inorganic nanostructures for optoelectronic applications. Chem. Rev., 2011, 111(9): 5179.

[109]

Chen YZ, Li AX, Yue XQ, Wang LN, Huang ZH, Kang FY, Volinsky AA. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting. Nanoscale, 2016, 8(27): 13228.

[110]

Chen YZ, Li AX, Jin M, Wang LN, Huang ZH. Inorganic nanotube/organic nanoparticle hybrids for enhanced photoelectrochemical properties. J. Mater. Sci. Technol., 2017, 33(7): 728.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/