Modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films

Ping Song , Cong Wang , Jie Ren , Ying Sun , Yong Zhang , Angélique Bousquet , Thierry Sauvage , Eric Tomasella

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1371 -1378.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1371 -1378. DOI: 10.1007/s12613-020-1982-7
Article

Modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films

Author information +
History +
PDF

Abstract

This paper demonstrates an intrinsic modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films. The (NiCuCrFeSi)N ((NCCFS)N) films were deposited by a magnetron sputtering system. Rutherford backscattering spectroscopy analysis confirms the uniform composition and good homogeneity of these high-entropy films. The real and imaginary parts of the permittivity for the (NCCFS)N material are calculated on the basis of the reflectance spectral fitting results. A redshift cutoff wavelength of the reflectance spectrum with increasing nitrogen gas flow rate exists because of the different levels of dispersion when changing nitrogen content. To realize significant solar absorption, the film surface was reconstituted to match its impedance with air by designing a pyramid nanostructure metasurface. Compared with the absorptance of the as-deposited films, the designed metasurface obtains a significant improvement in solar absorption with the absorptance increasing from 0.74 to 0.99. The metasurfaces also show low mid-infrared emissions with thermal emittance that can be as low as 0.06. These results demonstrate a new idea in the design of solar selective absorbing surface with controllable absorptance and low infrared emission for high-efficiency photo-thermal conversion.

Keywords

cutoff wavelength / solar selective absorption / infrared emission / nanostructure / high-entropy film

Cite this article

Download citation ▾
Ping Song, Cong Wang, Jie Ren, Ying Sun, Yong Zhang, Angélique Bousquet, Thierry Sauvage, Eric Tomasella. Modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(10): 1371-1378 DOI:10.1007/s12613-020-1982-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brinkworth BJ. Solar energy. Nature, 1974, 249, 726.

[2]

Lewis NS. Research opportunities to advance solar energy utilization. Science, 2016, 351(6271): aad1920.

[3]

Zhang QC, Mills DR. New cermet film structures with much improved selectivity for solar thermal applications. Appl. Phys. Lett., 1992, 60(5): 545.

[4]

Sergeant NP, Pincon O, Agrawal M, Peumans P. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks. Opt. Express, 2009, 17(25): 22800.

[5]

Gordon R, Brolo AG. Increased cut-off wavelength for a subwavelength hole in a real metal. Opt. Express, 2005, 13(6): 1933.

[6]

Yeng YX, Ghebrebrhan M, Bermel P, Chan WR, Joannopoulos JD, Soljacic M, Celanovic I. Enabling high-temperature nanophotonics for energy applications. Proceedings of the National Academy of Sciences, 2012, 109(7): 2280.

[7]

Dyachenko PN, do Rosário JJ, Leib EW, Petrov A Y, Störmer M, Weller H, Vossmeyer T, Schneider GA, Eich M. Tungsten band edge absorber/emitter based on a monolay-er of ceramic microspheres. Opt. Express, 2015, 23(19): A1236.

[8]

Ning YP, Wang WW, Wang L, Sun Y, Song P, Man HL, Zhang YL, Dai BB, Zhang JY, Wang C, Zhang Y, Zhao SX, Tomasella E, Bousquet A, Cellier J. Optical simulation and preparation of novel Mo/ZrSiN/ZrSiON/SiO2 solar selective absorbing coating. Sol. Energy Mater. Sol. Cells, 2017, 167, 178.

[9]

Ning YP, Wang WW, Sun Y, Wu YX, Liu YF, Man HL, Wang C, Zhang Y, Zhao SX, Tomasella E, Bousquet A. Investigation on low thermal emittance of Al films deposited by magnetron sputtering. Infrared Phys. Technol., 2016, 75, 133.

[10]

Ning YP, Wang WW, Sun Y, Wu YX, Man HL, Wang C, Zhao SX, Tomasella E, Bousquet A, Zhang Y. Tuning of reflectance transition position of Al-AlN cermet solar selective absorbing coating by simulating. Infrared Phys. Technol., 2017, 80, 65.

[11]

Céspedes E, Wirz M, Sánchez-García JA, Alvarez-Fraga L, Escobar-Galindo R, Prieto C. Novel Mo-Si3N4 based selective coating for high temperature concentrating solar power applications. Sol. Energy Mater. Sol. Cells, 2014, 122, 217.

[12]

Ma PJ, Geng QF, Gao XH, Yang SR, Liu G. Aqueous chemical solution deposition of spinel Cu1.5Mn1.5O4 single layer films for solar selective absorber. RSC Adv., 2016, 6(60): 54820.

[13]

Song P, Wu YX, Wang L, Sun Y, Ning YP, Zhang YL, Dai BB, Tomasella E, Bousquet A, Wang C. The investigation of thermal stability of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coating. Sol. Energy Mater. Sol. Cells, 2017, 171, 253.

[14]

E. Rephaeli and S.H. Fan, Tungsten black absorber for solar light with wide angular operation range, Appl. Phys. Lett., 92(2008), No. 21, art. No. 211107.

[15]

Rinnerbauer V, Shen Y, Joannopoulos JD, Soljacic M, Schäffler F, Celanovic I. Superlattice photonic crystal as broadband solar absorber for high temperature operation. Opt. Express, 2014, 22(S7): A1895.

[16]

Argyropoulos C, Le KQ, Mattiucci N, D’Aguanno G, Alù A. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Phys. Rev. B, 2013, 87(20): 5112.

[17]

Wan CL, Ho YL, Nunez-Sanchez S, Chen LF, Lopez-Garcia M, Pugh J, Zhu BF, Selvaraj P, Mallick T, Senthilarasu S, Cryan MJ. A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications. Nano Energy, 2016, 26, 392.

[18]

Liu GQ, Nie YY, Fu GL, Liu XS, Liu Y, Tang L, Liu ZQ. Semiconductor meta-surface based perfect light absorber. Nanotechnology, 2017, 28(16): 165202.

[19]

Heidari MH, Sedighy SH. Broadband wide-angle polarization-insensitive metasurface solar absorber. J. Opt. Soc. Am. A, 2018, 35(4): 522.

[20]

Liu ZQ, Liu GQ, Huang ZP, Liu XS, Fu GL. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol. Energy Mater. Sol. Cells, 2018, 179, 346.

[21]

Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater., 2008, 10(21): 534.

[22]

Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun., 2015, 6(7748): 1.

[23]

Li ZM, Pradeep KG, Deng Y, Raabe D, Tasan CC. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016, 534(7606): 227.

[24]

Cheng C-Y, Yeh J-W. High thermal stability of the amorphous structure of GexNbTaTiZr (x = 0.5, 1) high-entropy alloys. Mater. Lett., 2016, 181, 223.

[25]

Tsai MH, Wang CW, Lai CH, Yeh JW, Gan JY. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization. Appl. Phys. Lett., 2008, 92(5): 052109.

[26]

Cheng CY, Yeh JW. High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties. Mater. Lett., 2016, 185, 456.

[27]

Pogrebnjak AD, Yakushchenko IV, Bondar OV, Beresnev VM, Oyoshi K, Ivasishin OM, Amekura H, Takeda Y, Opielak M, Kozak C. Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNb-Ta)N coatings. J. Alloys Compd., 2016, 679, 155.

[28]

Yan XH, Li JS, Zhang WR, Zhang Y. A brief review of high-entropy films. Mater. Chem. Phys., 2018, 210, 12.

[29]

Mayer M. SIMNRA User’s Guide, 2017, Garching, Max-Planck-Institut Für Plasmaphysik, 350.

[30]

Ziegler JF, Biersack JP, Ziegler MD. SRIM — The Stopping and Range of Ions in Matter, 2008, Chester, Maryland, SRIM Co., 398.

[31]

Drude P. The Theory of Optics, 1925, New York, Dover Publications

[32]

Kim CC, Garland JW, Abad H, Raccah PM. Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation. Phys. Rev. B, 1992, 45(20): 11749.

[33]

Wu YX, Wang C, Sun Y, Ning YP, Liu YF, Xue YF, Wang WW, Zhao SX, Tomasella E, Bousquet A. Tomasella, and A. Bousquet, Study on the thermal stability of Al/NbTiSiN/NbTiSiON/SiO2 solar selective absorbing coating. Sol. Energy, 2015, 119, 18.

[34]

Barradas NP, Jeynes C, Webb RP. Simulated annealing analysis of Rutherford backscattering data. Appl. Phys. Lett., 1997, 71(2): 291.

[35]

Mayer M. SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. AIP Conference Proceedings, 1999, Denton, Texas, AIP, 541.

[36]

Fox M. Optical Properties of Solids, 2001, New York, Oxford University Press

[37]

Chen TK, Wong MS, Shun TT, Yeh JW. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol., 2005, 200(5–6): 1361.

[38]

Tsai DC, Chang ZC, Kuo BH, Chang SY, Shieu FS. Effects of silicon content on the structure and properties of (Al-CrMoTaTi)N coatings by reactive magnetron sputtering. J. Alloys Compd., 2014, 616, 646.

[39]

Alexei D, Ilya V, Boris P, Yurii L. Minimizing light reflection from dielectric textured surfaces. J. Opt. Soc. Am. A, 2011, 28(5): 770.

[40]

Dan A, Barshilia HC, Chattopadhyay K, Basu B. Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review. Renewable Sustainable Energy Rev., 2017, 79, 1050.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/