Reaction mechanisms between molten CaF2-based slags and molten 9CrMoCoB steel

Lei-zhen Peng , Zhou-hua Jiang , Xin Geng

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (5) : 611 -619.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (5) : 611 -619. DOI: 10.1007/s12613-020-1976-5
Article

Reaction mechanisms between molten CaF2-based slags and molten 9CrMoCoB steel

Author information +
History +
PDF

Abstract

Investigating the reaction mechanism between slag and 9CrMoCoB steel is important to develop the proper slag and produce qualified ingots in the electroslag remelting (ESR) process. Equilibrium reaction experiments between molten 9CrMoCoB steel and the slags of 55wt%CaF2-20wt%CaO-3wt%MgO-22wt%Al2O3-xwt%B2O3 (x = 0.0, 0.5, 1.0, 1.5, 2.0, 3.0) were conducted. The reaction mechanisms between molten 9CrMoCoB steel and the slags with different B2O3 contents were deduced based on the composition of the steel and slag samples at different reaction times. Results show that B content in the steel can be controlled within the target range when the B2O3 content is 0.5wt% and the FeO content ranges from 0.18wt% to 0.22wt% in the slag. When the B2O3 content is ≥1wt%, the reaction between Si and B2O3 leads to the increase of the B content of steel. The additions of SiO2 and B2O3 to the slag should accord to the mass ratio of [B]/[Si] in the electrode, and SiO2 addition inhibits the reaction between Si and Al2O3.

Keywords

9CrMoCoB / electroslag remelting / B2O3 / thermodynamic calculation / reaction mechanism

Cite this article

Download citation ▾
Lei-zhen Peng, Zhou-hua Jiang, Xin Geng. Reaction mechanisms between molten CaF2-based slags and molten 9CrMoCoB steel. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(5): 611-619 DOI:10.1007/s12613-020-1976-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang YP, Wang LG, Dong CQ, Xu G, Morosuk T, Tsatsaronis G. Comprehensive exergy-based evaluation and parametric study of a coal-fired ultra-supercritical power plant. Appl. Energy, 2013, 112, 1087.

[2]

Ciferno JP, Fout TE, Jones AP, Murphy JT. Capturing carbon from existing coal-fired power plants. Chem. Eng. Prog., 2009, 105(4): 33.

[3]

Zeng YP, Jia JD, Cai WH, Dong SQ, Wang ZC. Effect of long-term service on the precipitates in P92 steel. Int. J. Miner. Metall. Mater., 2018, 25(8): 913.

[4]

Abe F, Horiuchi T, Taneike M, Sawada K. Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature. Mater. Sci. Eng. A, 2004, 378(1–2): 299.

[5]

Maziasz PJ. Developing an austenitic stainless steel for improved performance in advanced fossil power facilities. JOM, 1989, 41(7): 14.

[6]

Blaes N, Donth B, Bokelmann D. High chromium steel forgings for steam turbines at elevated temperatures. Energy Mater., 2007, 2(4): 207.

[7]

Chalmers H, Gibbins J. Initial evaluation of the impact of post-combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance. Fuel, 2007, 86(14): 2109.

[8]

Viswanathan R, Bakker W. Materials for ultra-supercritical coal power plants—Turbine materials: Part II. J. Mater. Eng. Perform., 2001, 10(1): 96.

[9]

Weber V, Jardy A, Dussoubs B, Ablitzer D, Rybéron S, Schmitt V, Hans S, Poisson H. A comprehensive model of the electroslag remelting process: description and validation. Metall. Mater. Trans. B, 2009, 40(3): 271.

[10]

Dong YW, Jiang ZH, Liu H, Chen R, Song ZW. Simulation of multi-electrode ESR process for manufacturing large ingot. ISIJ Int., 2012, 52(12): 2226.

[11]

Kasana SS, Pandey OP. Effect of electroslag remelting and homogenization on hydrogen flaking in AMS-4340 ultra-high-strength steels. Int. J. Miner. Metall. Mater., 2019, 26(5): 611.

[12]

Plöckinger E. Beeley P. Electroslag remelting—A modern tool in metallurgy. The Hatfield Memorial Lectures, 2005, Cambridge, Woodhead Publishing Limited, 45. vol. 3

[13]

Van Den Avyle JA, Brooks JA, Powell AC. Reducing defects in remelting processes for high-performance alloys. JOM, 1998, 50(3): 22.

[14]

Li SJ, Cheng GG, Miao ZQ, Chen L, Jiang XY. Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting. Int. J. Miner. Metall. Mater., 2019, 26(3): 291.

[15]

Knežević V, Balun J, Sauthoff G, Inden G, Schneider A. Design of martensitic/ferritic heat-resistant steels for application at 650°C with supporting thermodynamic modelling. Mater Sci. Eng. A, 2008, 477(1–2): 334.

[16]

Masuyama F. History of power plants and progress in heat resistant steels. ISIJ Int., 2001, 41(6): 612.

[17]

Ishitsuka T, Inoue Y, Ogawa H. Effect of silicon on the steam oxidation resistance of a 9% Cr heat resistant steel. Oxid. Met., 2004, 61(1–2): 125.

[18]

Mitchell A, Reyes-Carmona F, Samuelsson E. The deoxidation of low-alloy steel ingots during ESR. Trans. Iron Steel Inst. Jpn., 1984, 24(7): 547.

[19]

Reyes-Carmona F, Mitchell A. Deoxidation of ESR slags. ISIJ Int., 1992, 32(4): 529.

[20]

Pateisky G, Biele H, Fleischer HJ. The reactions of titanium and silicon with Al2O3-CaO-CaF2 slags in the ESR process. J. Vac. Sci. Technol., 1972, 9(6): 1318.

[21]

Medina SF, Cores A. Thermodynamic aspects in the manufacturing of micro-alloyed steels by the electroslag remelting process. ISIJ Int., 1993, 33(12): 1244.

[22]

Fedko J, Krucinski M. Thermodynamic analysis of boron concentration changes in steel during electroslag remelting. Ironmaking Steelmaking, 1989, 16(2): 116.

[23]

D.S. Kim, G.J. Lee, M.B. Lee, J.I. Hur, and J.W. Lee, Manufacturing of 9CrMoCoB steel of large ingot with homogeneity by ESR process, IOP Conf. Ser.: Mater. Sci. Eng., 143(2016), art. No. 012002.

[24]

Grigorân VA, Belânčikov LN, Stomahin A. Theoretical Principles of Electric Steelmaking, 1983, Milpitas, Mir Publishers, 154.

[25]

Liang YJ, Che YC, Liu XX. Inorganic Thermodynamics Data Book, 1993, Shenyang, Northeast University Press, 216.

[26]

Huang XH. Principles of Iron and Steel Metallurgy, 1990, Beijing, Metallurgical Industry Press, 309.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/