A review on liquid metals as cathodes for molten salt/oxide electrolysis

Shu-qiang Jiao , Han-dong Jiao , Wei-li Song , Ming-yong Wang , Ji-guo Tu

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (12) : 1588 -1598.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (12) : 1588 -1598. DOI: 10.1007/s12613-020-1971-x
Invited Review

A review on liquid metals as cathodes for molten salt/oxide electrolysis

Author information +
History +
PDF

Abstract

Compared with solid metals, liquid metals are considered more promising cathodes for molten slat/oxide electrolysis due to their fascinating advantages, which include strong depolarization effect, strong alloying effect, excellent selective separation, and low operating temperature. In this review, we briefly introduce the properties of the liquid metal cathodes and their selection rules, and then summarize development in liquid metal cathodes for molten salt electrolysis, specifically the extraction of Ti and separation of actinides and rare-earth metals in halide melts. We also review recent attractive progress in the preparation of liquid Ti alloys via molten oxide electrolysis by using liquid metal cathodes. Problems related to high-quality alloy production and large-scale applications are cited, and several research directions to further improve the quality of alloys are also discussed to realize the industrial applications of liquid metal cathodes.

Keywords

liquid metal cathodes / molten salts / molten oxides / electrolysis

Cite this article

Download citation ▾
Shu-qiang Jiao, Han-dong Jiao, Wei-li Song, Ming-yong Wang, Ji-guo Tu. A review on liquid metals as cathodes for molten salt/oxide electrolysis. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(12): 1588-1598 DOI:10.1007/s12613-020-1971-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Popov KI, Djokić SS, Grgur BN. Fundamental Aspects of Electrometallurgy, 2002, Boston, Springer

[2]

Fray DJ. Emerging molten salt technologies for metals production. JOM, 2001, 53(10): 27.

[3]

O. Lindstrom, Apparatus for the Electrolytic Production of Alkali, U.S. Patent, Appl. 3864236, 1975.

[4]

V. De Nora, P.M. Spaziante, and A. Nidola, Molten Salt Electrolysis, U.S. Patent, Appl. 4187155, 1980.

[5]

T. Ogasawara, Y. Natsume, and K. Fujita Process for the Electrolytic Production of Magnesium, U.S. Patent, Appl. 5089094, 1992.

[6]

Hirschhorn IS. Commercial production of rare earth metals by fused salt electrolysis. JOM, 1968, 20(3): 19.

[7]

V. De Nora, J.F. Gauger, J.M. Fresnel, I.L. Adorian, and J.J.R. Duruz, Electrolytic Production of Aluminum, U.S. Patent, Appl. 4650552, 1987.

[8]

Piette LH, Ludwig P, Adams RN. Electrolytic generation of radical ions in aqueous solution. J. Am. Chem. Soc., 1961, 83(18): 3909.

[9]

Widegren JA, Saurer EM, Marsh KN, Magee JW. Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity. J. Chem. Thermodyn., 2005, 37(6): 569.

[10]

Xu QA, Ning ZY, Shen MR, Xin Y, Zhao B, Zhu JS. CNx films deposition by organic solution electrolysis. Surf. Coat. Technol., 1999, 122(2–3): 188.

[11]

Janz GJ. Molten Salts Handbook, 2013, Netherlands, Elsevier

[12]

D. Sadoway, Apparatus for Electrolysis of Molten Oxides, U.S. Patent, Appl. 11/496615, 2008.

[13]

Kvande H, Haupin W. Cell voltage in aluminum electrolysis: A practical approach. JOM, 2000, 52(2): 31.

[14]

Allanore A. Features and challenges of molten oxide electrolytes for metal extraction. J. Electrochem. Soc., 2015, 162(1): E13.

[15]

Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407(6802): 361.

[16]

E. Nishimura, M. Kuroki, N. Kikutake, and Y. Shindou, Method and Apparatus for Producing a High-Purity Titanium, U.S. Patent, Appl. 5336378, 1994.

[17]

Shi ZN, Xu JL, Qiu ZX, Wang ZW, Gao BL. Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis. JOM, 2003, 55(11): 63.

[18]

Wang QY, Li Y, Jiao SQ, Zhu HM. Producing metallic titanium through electro-refining of titanium nitride anode. Electrochem. Commun., 2013, 35, 135.

[19]

P.A. Foster Jr., S.K. Das, and A.J. Becker, Method of Producing Aluminum Using Graphite Cathode Coated with Refractory HardMetal, U.S. Patent, Appl. 4308115, 1981.

[20]

Li J, XJ, Lai YQ, Li QY, Liu YX. Research progress in TiB2 wettable cathode for aluminum reduction. JOM, 2008, 60(8): 32.

[21]

Koyama T, Iizuka M, Shoji Y, Fujita R, Tanaka H, Kobayashi T, Tokiwai M. An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing. J. Nucl. Sci. Technol., 1997, 34(4): 384.

[22]

Dosaj V, Aksaranan C, Morris DR. Thermodynamic properties of the calcium + calcium chloride system measured by an electrochemical technique. J. Chem. Soc. Faraday Trans. 1, 1975, 71, 1083.

[23]

Bard AJ, Faulkner LR, Leddy J, Zoski CG. Electrochemical Methods: Fundamentals and Applications, 1980, New York, Wiley

[24]

Kato T, Inoue T, Iwai T, Arai Y. Separation behaviors of actinides from rare-earths in molten salt electrorefining using saturated liquid cadmium cathode. J. Nucl. Mater., 2006, 357(1–3): 105.

[25]

Sakamura Y, Hijikata T, Kinoshita K, Inoue T, Storvick TS, Krueger CL, Grantham LF, Fusselman SP, Grimmett DL, Roy JJ. Separation of actinides from rare earth elements by electrorefining in LiCl-KCl eutectic salt. J. Nucl. Sci. Technol., 1998, 35(1): 49.

[26]

Kinoshita K, Inoue T, Fusselman SP, Grimmett DL, Roy JJ, Gay RL, Krueger CL, Nabelek CR, Storvick TS. Separation of uranium and transuranic elements from rare earth elements by means of multistage extraction in LiCl-KCl/Bi system. J. Nucl. Sci. Technol., 1999, 36(2): 189.

[27]

Jiao HD, Wang JX, Zhang L, Zhang K, Jiao SQ. Electrochemically depositing titanium(III) ions at liquid tin in a NaCl-KCl melt. RSC Adv., 2015, 5, 62235.

[28]

Sharma RA. Neodymium production processes. JOM, 1987, 39(2): 33.

[29]

Xiao W, Wang DH. Rare metals preparation by electro-reduction of solid compounds in high-temperature molten salts. Rare Met., 2016, 35(8): 581.

[30]

Yang QQ. Studies on electrodeposition of rare earth metals and their alloys in molten salts. Electrochemistry, 1997, 3(2): 117.

[31]

Matsumiya M, Takano M, Takagi R, Fujita R. Recovery of Ba2+ using liquid metallic cathodes in molten chlorides. J. Nucl. Sci. Technol., 1998, 35(11): 836.

[32]

Vermaak MKG. Vanadium Recovery in the Electro-Aluminothermic Production of Ferrovanadium, 2000, Pretoria, University of Pretoria

[33]

Koyama T, Iizuka M, Kondo N, Fujita R, Tanaka H. Electrodeposition of uranium in stirred liquid cadmium cathode. J. Nucl. Mater., 1997, 247, 227.

[34]

Kim SH, Paek S, Kim TJ, Park DY, Ahn DH. Electrode reactions of Ce3+/Ce couple in LiCl-KCl solutions containing CeCl3 at solid W and liquid Cd electrodes. Electrochim. Acta, 2012, 85, 332.

[35]

Li SX, Herrmann SD, Goff KM, Simpson MF, Benedict RW. Actinide recovery experiments with bench-scale liquid cadmium cathode in real fission product-laden molten salt. Nucl. Technol., 2009, 165(2): 190.

[36]

T. Satoh, T. Iwai, and Y. Arai, Nitridation of U and Pu recovered in liquid Cd cathode by molten salt electrorefining of (U, Pu) N, [in] Proceedings of International Conference on Advanced Nuclear Fuel Cycle, Sustainable Options & Industrial Perspectives (Global 2009), Paris, 2009, p. 1278.

[37]

Y. Nakazono, T. Iwai, and Y. Arai, Nitride formation behavior of actinides recovered into liquid Cd cathode by electrorefining, [in] Proceedings of the international conference on nuclear energy systems for future generation and global sustainability (Global 2005), Tsukuba, 2005.

[38]

Iizuka M, Uozumi K, Inoue T, Iwai T, Shirai O, Arai Y. Behavior of plutonium and americium at liquid cadmium cathode in molten LiCl-KCl electrolyte. J. Nucl. Mater., 2001, 299(1): 32.

[39]

Shirai O, Uozumi K, Iwai T, Arai Y. Electrode reaction of the U3+/U couple at liquid Cd and Bi electrodes in LiCl-KCl eutectic melts. Anal. Sci., 2001, 17, 1959 Suppl.

[40]

Hayashi H, Akabori M, Minato K. Cyclic voltammetry behavior of americium at a liquid cadmium electrode in LiCl-KCl eutectic melts. Nucl. Technol., 2008, 162(2): 129.

[41]

Uozumi K, Iizuka M, Kato T, Inoue T, Shirai O, Iwai T, Arai Y. Electrochemical behaviors of uranium and plutonium at simultaneous recoveries into liquid cadmium cathodes. J. Nucl. Mater., 2004, 325(1): 34.

[42]

Matsumiya M, Takano M, Takagi R, Fujita R. Electrochemical behavior of Ba2+ at liquid metal cathodes in molten chlorides. Z. Naturforsch. A: Phys. Sci., 1999, 54(12): 739.

[43]

Matsumiya M, Takagi R, Fujita R. Recovery of Eu2+ and Sr2+ using liquid metallic cathodes in molten NaCl-KCl and KCl system. J. Nucl. Sci. Technol., 1997, 34(3): 310.

[44]

Matsumiya M, Takagi R. Electrochemical impedance spectroscopic study on Eu2+ and Sr2+ using liquid metal cathodes in molten chlorides. Z. Naturforsch. A: Phys. Sci., 2000, 55(8): 673.

[45]

Matsumiya M, Takagi R, Fujita R. Recovery of caesium using liquid metallic cathodes in molten fluoride system. J. Nucl. Sci. Technol., 1998, 35(2): 137.

[46]

Laidler JJ, Battles JE, Miller WE, Ackerman JP, Carls EI. Development of pyroprocessing technology. Prog. Nucl. Energy, 1997, 31(1–2): 131.

[47]

Roy JJ, Grantham LF, Grimmett DL, Fusselman SP, Krueger CL, Storvick TS, Inoue T, Sakamura Y, Takahashi N. Thermodynamic properties of U, Np, Pu, and Am in molten LiCl-KCl eutectic and liquid cadmium. J. Electrochem. Soc., 1996, 143(8): 2487.

[48]

Ackerman JP, Settle JL. Partition of lanthanum and neodymium metals and chloride salts between molten cadmium and molten LiCl-KCl eutectic. J. Alloys Compd., 1991, 177(1): 129.

[49]

Hwang YS, Jeong MS, Park SW. Current status on the nuclear back-end fuel cycle R&D in Korea. Prog. Nucl. Energy, 2007, 49(6): 463.

[50]

Castrillejo Y, Bermejo MR, Arocas PD, Martinez AM, Barrado E. The electrochemical behaviour of the Pr(III)/Pr redox system at Bi and Cd liquid electrodes in molten eutectic LiCl-KCl. J. Electroanal. Chem., 2005, 579(2): 343.

[51]

Vandarkuzhali S, Gogoi N, Ghosh S, Prabhakara Reddy B, Nagarajan K. Electrochemical behaviour of LaCl3 at tungsten and aluminium cathodes in LiCl-KCl eutectic melt. Electrochim. Acta, 2012, 59, 245.

[52]

Vaden D, Li SX, Westphal BR, Davies KB, Johnson TA, Pace DM. Engineering-scale liquid cadmium cathode experiments. Nucl. Technol., 2008, 162(2): 124.

[53]

H.L. Slatin, Electrolysis of Rare-Earth Elements and Yttrium, U.S. Patent, Appl. 2961387, 1960.

[54]

D.W. Bareis, Method of Purifying Liquid Fuels of Nuclear Reactors, U.S. Patent, Appl. 2758023, 1956.

[55]

Yan YD, Ji DB, Xue Y, Zhang ML, Wang P, Liu YH, Yin TQ, Li P, Han W, Wang J. Electrochemical synthesis quaternary Mg-Li-Al-Pr alloy with and without whisker on magnesium cathode in LiCl-KCl-PrCl3-AlCl3 melts. J. Electrochem. Soc., 2017, 164(7): D429.

[56]

Lucas J, Lucas P, Le Mercier T, Rollat A, Davenport WG. Rare Earths: Science, Technology, Production and Use, 2014, Netherlands, Elsevier

[57]

Han W, Li WL, Li M, Li ZY, Sun Y, Yang XG, Zhang ML. Electrochemical co-reduction of Y(III) and Zn(II) and extraction of yttrium on Zn electrode in LiCl-KCl eutectic melts. J. Solid State Electrochem., 2018, 22(8): 2435.

[58]

Wang P, Ji DB, Ji DQ, Zheng JN, Yan YD, Zhang ML, Han W, Wu HJ. Electrochemical and thermodynamic properties of ytterbium and formation of Zn-Yb alloy on liquid Zn electrode. J. Nucl. Mater., 2019, 517, 157.

[59]

Gibilaro M, Bolmont S, Massot L, Latapie L, Chamelot P. On the use of liquid metals as cathode in molten fluorides. J. Electroanal. Chem., 2014, 726, 84.

[60]

A. Honders, A.J. Horstik, and G.J.M. Van Eyden, Process for the Electrolytic Production of Metals from a Fused Salt Melt with a Liquid Cathode, U.S. Patent, Appl. 4853094, 1989.

[61]

Chen Z, Zhang ML, Han W, Wang XL, Tang DX. Electrodeposition of Zr and electrochemical formation of Mg-Zr alloys from the eutectic LiCl-KCl. J. Alloys Compd., 2008, 459(1–2): 209.

[62]

Xu Y, Jiao HD, Wang MY, Jiao SQ. Direct preparation of V-Al alloy by molten salt electrolysis of soluble NaVO3 on a liquid Al cathode. J. Alloys Compd., 2019, 779, 22.

[63]

Robin A, De Lepinay J. Determination of the apparent standard potential of the Ti/Ti(III) system in the LiF-NaF-KF eutectic using voltammetry, chronopotentiometry and open-circuit potentiometry, 1991, 36(5–6): 1009.

[64]

Robin A. Behavior of titanium electrocoatings on nickel in fluoride melts. Mater. Lett., 1998, 34(3–6): 196.

[65]

Robin A. Influence of temperature on the reduction mechanism of Ti(III) ions on iron in the LiF-NaF-KF eutectic melt and on the electrochemical behavior of the resultant titanium coatings. Mater. Chem. Phys., 2005, 89(2–3): 438.

[66]

Maity SK, Chandra Shekhar M, Ananth V. An exploratory study of electrodeposition of titanium using titanium dioxide carbon composite anode and molten aluminium cathode. Miner. Process. Extr. Metall., 2009, 118(1): 10.

[67]

Kado Y, Kishimoto A, Uda T. Electrolysis of TiO2 or TiCl2 using Bi liquid cathode in molten CaCl2. J. Electrochem. Soc., 2013, 160(10): E139.

[68]

Kado Y, Kishimoto A, Uda T. New smelting process for titanium: Magnesiothermic reduction of TiCl4 into liquid Bi and subsequent refining by vacuum distillation. Metall. Mater. Trans. B, 2015, 46(1): 57.

[69]

Kishimoto A, Kado Y, Uda T. Electrorefining of titanium from Bi-Ti alloys in molten chlorides for a new smelting process of titanium. J. Appl. Electrochem., 2016, 46(9): 987.

[70]

Jiao SQ, Zhu HM. Novel metallurgical process for titanium production. J. Mater. Res., 2006, 21(9): 2172.

[71]

Jiao SQ, Ning XH, Huang K, Zhu HM. Electrochemical dissolution behavior of conductive TiCxO1−x solid solutions. Pure Appl. Chem., 2010, 82(8): 1691.

[72]

Jiao HD, Wang JX, Tian DH, Jiao SQ. Electrochemical behaviour of K2TiF6 at liquid metal cathodes in the LiF-NaF-KF eutectic melt. Electrochemistry, 2019, 87(3): 142.

[73]

Jiao HD, Jiao SQ, Song WL, Chen HS, Wang MY, Tu JG, Fang DN. Depolarization behavior of Ti deposition at liquid metal cathodes in a NaCl-KCl-KF melt. J. Electrochem. Soc., 2019, 166(13): E401.

[74]

R.H. Aiken, Process of Making Iron From the Ore, U.S. Patent, 816142, 1906.

[75]

Hashimoto Y, Uriya K, Kono R. Electrowinning of titanium from its oxides, Part II. Influences of fluoride salt baths on fused-salt electrodeposition of titanium metal from titanium dioxide. Denki Kagaku, 1971, 39(12): 938.

[76]

Sadoway DR. The electrochemical processing of refractory metals. JOM, 1991, 43(7): 15.

[77]

Todd JB. Energy reduction in Hall-Héroult cells with conventional and special electrodes. JOM, 1981, 33(9): 42.

[78]

F. Cardarelli, Method for Electrowinning of Titanium Metal or Alloy from Titanium Oxide Containing Compound in the Liquid State, U.S. Patent, Appl. 7504017, 2009.

[79]

Takenaka T, Matsuo H, Sugawara M, Kawakami M. High temperature electrolysis of Ti and its alloys with a DC-ESR unit. Key Eng. Mater., 2010, 436, 85.

[80]

Yamanaka Y, Morishige T, Takenaka T. Electrochemical behavior of Ti in molten fluoride-oxide system. ECS Trans., 2014, 64(4): 275.

[81]

Allanore A, Yin L, Sadoway DR. A new anode material for oxygen evolution in molten oxide electrolysis. Nature, 2013, 497(7449): 353.

[82]

Wang DH, Gmitter AJ, Sadoway DR. Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide. J. Electrochem. Soc., 2011, 158(6): E51.

[83]

Kim H, Paramore J, Allanore A, Sadoway DR. Electrolysis of molten iron oxide with an iridium anode: The role of electrolyte basicity. J. Electrochem. Soc., 2011, 158(10): E101.

[84]

Zhang K, Jiao HD, Zhou ZG, Jiao SQ, Zhu HM. Electrochemical behavior of Fe(III) ion in CaO-MgO-SiO2-Al2O3-NaF-Fe2O3 melts at 1673 K. J. Electrochem. Soc., 2016, 163(13): D710.

[85]

Zhou ZG, Jiao HD, Tu JG, Zhu J, Jiao SQ. Direct production of Fe and Fe-Ni alloy via molten oxides electrolysis. J. Electrochem. Soc., 2017, 164(6): E113.

[86]

Zhou ZG, Wang S, Jiao HD, Jiao SQ. The feasibility of electrolytic preparation of Fe-Ni-Cr alloy in molten oxides system. J. Electrochem. Soc., 2017, 164(14): D964.

[87]

Sirk AHC, Sadoway DR, Sibille L. Direct electrolysis of molten lunar regolith for the production of oxygen and metals on the moon. ECS Trans., 2010, 28(6): 367.

[88]

Jiao HD, Tian DH, Wang S, Zhu J, Jiao SQ. Direct preparation of titanium alloys from Ti-bearing blast furnace slag. J. Electrochem. Soc., 2017, 164(7): D511.

[89]

Lütjering G, Williams JC. Titanium, 2007, 2nd ed., New York, Springer-Verlag Berlin Heidelberg

[90]

Zhang L, Zhang LN, Wang MY, Wang MY, Li GQ, Sui ZT. Dynamic oxidation of the Ti-bearing blast furnace slag. ISIJ Int., 2006, 46(3): 458.

[91]

Hu K, Lv XW, Yu WZ, Yan ZM, Li W, Li SP. Electric conductivity of TiO2-Ti2O3-FeO-CaO-SiO2-MgO-Al2O3 for high-titania slag smelting process. Metall. Mater. Trans. B, 2019, 50(6): 2982.

[92]

Jiao HD, Tian DH, Tu JG, Jiao SQ. Production of Ti-Fe alloys via molten oxide electrolysis at a liquid iron cathode. RSC Adv., 2018, 8(31): 17575.

[93]

Pu ZH, Jiao HD, Mi ZS, Wang MY, Jiao SQ. Selective extraction of titanium from Ti-bearing slag via the enhanced depolarization effect of liquid copper cathode. J. Energy Chem., 2020, 42, 43.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/