Fabrication of robust aluminum-carbon nanotube composites using ultrasonic assembly and rolling process

Shahab Shahsavar , Mostafa Ketabchi , Saeed Bagherzadeh

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (1) : 160 -167.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (1) : 160 -167. DOI: 10.1007/s12613-020-1969-4
Article

Fabrication of robust aluminum-carbon nanotube composites using ultrasonic assembly and rolling process

Author information +
History +
PDF

Abstract

This study introduced a novel fabrication of aluminum—carbon nanotube (CNT) composites by employing bulk acoustic waves and accumulative roll bonding (ARB). In this method, CNT particles were aligned using ultrasonic standing wave in an aqueous media, and the arrayed particles were precipitated on the aluminum plate substrate. Then, the plates rolled on each other through the ARB process with four passes. Optical and scanning electron micrographs demonstrated the effective aligning of CNTs on the aluminum substrate with a negligible deviation of arrayed CNTs through the ARB process. The X-ray diffraction pattern of the developed composites showed no peaks for carbon and aluminum carbide. In addition, tensile tests showed that the longitudinal strength of the specimens processed with aligned CNTs was significantly greater than that of the specimens with common randomly dispersed particles. The proposed technique is beneficial for the fabrication of Al—CNT composites with directional mechanical strength.

Keywords

aluminum—carbon nanotube / composite / ultrasonic / manipulation / strength / microstructure

Cite this article

Download citation ▾
Shahab Shahsavar, Mostafa Ketabchi, Saeed Bagherzadeh. Fabrication of robust aluminum-carbon nanotube composites using ultrasonic assembly and rolling process. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(1): 160-167 DOI:10.1007/s12613-020-1969-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Odom TW, Huang JL, Kim P, Lieber CM. Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B, 2000, 104(13): 2794.

[2]

Yakobson BI, Avouris P. Mechanical properties of carbon nanotubes. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Topics in Applied Physics, 2001, 80, 287.

[3]

Harris PJF. Carbon nanotube composites. Int. Mater. Rev., 2004, 49(1): 31.

[4]

B. Arash, Q. Wang, and V.K. Varadan, Mechanical properties of carbon nanotube/polymer composites, Sci. Rep., 4(2014), art. No. 6479.

[5]

Radhamani AV, Lau HC, Ramakrishna S. CNT-reinforced metal and steel nanocomposites: A comprehensive assessment of progress and future directions. Composites Part A, 2018, 114, 170.

[6]

Gao L, Jiang LQ, Sun J. Carbon nanotube-ceramic composites. J. Electroceram., 2006, 17, 51.

[7]

Ahmadi M, Ansari R, Rouhi H. Multi-scale bending, buckling and vibration analyses of carbon fiber/carbon nanotube-reinforced polymer nanocomposite plates with various shapes. Physica E, 2017, 93, 17.

[8]

Larianovsky N, Popov V, Katz-Demyanetz A, Fleisher A, Meyers DE, Chaudhuri RS. Production of Al metal matrix composites reinforced with carbon nanotubes by two-stage melt-based HPDC-CE method. J. Eng. Mater. Technol., 2019, 141(1): 011002.

[9]

Shahid M, Mansoor M. Induction melting as a fabrication route for aluminum-carbon nanotubes nanocomposite. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2016, 10(6): 682.

[10]

Wang LZ, Liu Y, Wu JJ, Zhang X. Mechanical properties and friction behaviors of CNT/AlSi10Mg composites produced by spark plasma sintering. Int. J. Miner. Metall. Mater., 2017, 24(5): 584.

[11]

Bakshi SR, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev., 2010, 55(1): 41.

[12]

Morovvati MR, Mollaei-Dariani B. The formability investigation of CNT-reinforced aluminum nano-composite sheets manufactured by accumulative roll bonding. Int. J. Adv. Manuf. Technol., 2018, 95, 3523.

[13]

Cao Q, Han SJ, Tulevski GS, Zhu Y, Lu DD, Haensch W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol., 2013, 8(3): 180.

[14]

Nam TH, Goto K, Oshima K, Premalal EVA, Shimamura Y, Inoue Y, Naito K, Ogihara S. Mechanical property enhancement of aligned multi-walled carbon nanotube sheets and composites through press-drawing process. Adv. Compos. Mater., 2016, 25(1): 73.

[15]

Mikhalchan A, Gspann T, Windle A. Aligned carbon nanotube-epoxy composites: The effect of nanotube organization on strength, stiffness, and toughness. J. Mater. Sci., 2016, 51, 10005.

[16]

Hou ZC, Xiong LQ, Liu YF, Zhu L, Li WZ. Preparation of super-aligned carbon nanotube-reinforced nickel-matrix laminar composites with excellent mechanical properties. Int. J. Miner. Metall. Mater., 2019, 26(1): 133.

[17]

Iakoubovskii K. Techniques of aligning carbon nanotubes. Cent. Eur. J. Phys., 2009, 7(4): 645.

[18]

Cui JL, Yang LJ, Mei XS, Wang Y, Wang WJ, Liu B, Fan ZJ. Nanomanipulation of carbon nanotubes with the vector scanning mode of atomic force microscope. Integr. Ferroelectr., 2015, 163(1): 81.

[19]

Scholz MS, Drinkwater BW, Llewellyn-Jones TM, Trask RS. Counterpropagating wave acoustic particle manipulation device for the effective manufacture of composite materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2015, 62(10): 1845.

[20]

Ohlin M. Ultrasonic Fluid and Cell Manipulation, 2015, Stockholm, KTH Royal Institute of Technology [Dissertation]

[21]

M.S. Scholz, B.W. Drinkwater, and R.S. Trask, Ultrasonic assembly of short fiber reinforced composites, [in] 2014 IEEE International Ultrasonics Symposium, Chicago, 2014, p. 369.

[22]

Mitri FG. Theoretical calculation of the acoustic radiation force acting on elastic and viscoelastic cylinders placed in a plane standing or quasistanding wave field. Eur. Phys. J. B, 2005, 44, 71.

[23]

Haslam MD, Raeymaekers B. Aligning carbon nanotubes using bulk acoustic waves to reinforce polymer composites. Composites Part B, 2014, 60, 91.

[24]

Wu YF, Kim GY, Russell AM. Effects of mechanical alloying on an Al6061-CNT composite fabricated by semi-solid powder processing. Mater. Sci. Eng. A, 2012, 538, 164.

[25]

Li HP, Fan JW, Kang JL, Zhao NQ, Wang XX, Li BE. In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites. Trans. Nonferrous Met. Soc. China, 2014, 24(7): 2331.

[26]

Ahmadi M, Ansari R, Hassanzadeh-Aghdam MK. Micromechanical analysis of elastic modulus of carbon nanotube-aluminum nanocomposites with random microstructures. J. Alloys Compd., 2019, 779, 433.

[27]

Bradbury CR, Gomon JK, Kollo L, Kwon H, Leparoux M. Hardness of multi wall carbon nanotubes reinforced aluminum matrix composites. J. Alloys Compd., 2014, 585, 362.

[28]

Pérez-Bustamante R, Gómez-Esparza CD, Estrada-Guel I, Miki-Yoshida M, Licea-Jiménez L, Pérez-García SA, Martínez-Sánchez R. Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling. Mater. Sci. Eng. A, 2009, 502(1–2): 159.

[29]

M. Ahmadi, R. Ansari, and S. Rouhi, Finite element investigation of temperature dependence of elastic properties of carbon nanotube reinforced polypropylene, Eur. Phys. J. Appl. Phys., 80(2017), No. 3, art. No. 30401.

[30]

Yamamoto G, Shirasu K, Hashida T, Takagi T, Suk JW, An J, Piner RD, Ruoff RS. Nanotube fracture during the failure of carbon nanotube/alumina composites. Carbon, 2011, 49(12): 3709.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/