Deformation behavior and plastic instability of boronized Al0.25CoCrFeNi high-entropy alloys

Jin-xiong Hou , Jing Fan , Hui-jun Yang , Zhong Wang , Jun-wei Qiao

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1363 -1370.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1363 -1370. DOI: 10.1007/s12613-020-1967-6
Article

Deformation behavior and plastic instability of boronized Al0.25CoCrFeNi high-entropy alloys

Author information +
History +
PDF

Abstract

Using thermochemical treatments, boronized layers were successfully prepared on Al0.25CoCrFeNi high-entropy alloys (HEAs). The thickness of the boronized layers ranged widely from 20 to 50 µm, depending on the heat treatment time. Boronizing remarkably improved the surface hardness from HV 188 to HV 1265 after treating at 900°C for 9 h. Moreover, boronizing enhanced the yield strength of HEAs from 195 to 265 MPa but deteriorated the tensile ductility. Multiple crackings in the boride layers significantly decreased the plasticity. The insufficient work-hardening capacity essentially facilitated the plastic instability of the boronized HEAs. With decreasing substrate thickness, the fracture modes gradually transformed from dimples to quasi-cleavage and eventually to cleavage.

Keywords

boronizing / high-entropy alloys / boride layers / tensile strength / cleavage fracture

Cite this article

Download citation ▾
Jin-xiong Hou, Jing Fan, Hui-jun Yang, Zhong Wang, Jun-wei Qiao. Deformation behavior and plastic instability of boronized Al0.25CoCrFeNi high-entropy alloys. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(10): 1363-1370 DOI:10.1007/s12613-020-1967-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeh JW, Chen SK, Jin SJ, Gan JY, Chen TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloy with multiple principal element: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[2]

Cantor B, Chang ITH, Knight P, Vincent AJB. Micro-structural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 2004, 375–377, 213.

[3]

Zhang Y, Qiao JW, Liaw PK. A brief review of high entropy alloys and serration behavior and flow units. J. Iron Steel Res. Int., 2016, 23(1): 2.

[4]

Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater., 2017, 122, 448.

[5]

Gao MC, Yeh JW, Liaw PK, Zhang Y. High-Entropy Alloys: Fundamentals and Applications, 2016, Cham, Springer

[6]

Zhang LJ, Jiang ZK, Zhang MD, Fan JT, Liu DJ, Yu PF, Li G, Liu RP. Effect of solid carburization on the surface microstructure and mechanical properties of the equiatomic CoCrFeNi high-entropy alloy. J. Alloys Compd., 2018, 769, 27.

[7]

Nishimoto A, Fukube T, Maruyama T. Microstructural, mechanical, and corrosion properties of plasma-nitrided CoCrFeMnNi high-entropy alloys. Surf. Coat. Technol., 2019, 376, 52.

[8]

Xia ZH, Zhang M, Zhang Y, Zhao Y, Liaw PK, Qiao JW. Effects of Ni-P amorphous films on mechanical and corrosion properties of Al0.3CoCrFeNi high-entropy alloys. Intermetallics, 2018, 94, 65.

[9]

Hou JX, Zhang M, Yang HJ, Qiao JW, Wu YC. Surface strengthening in Al0.25CoCrFeNi high-entropy alloy by boronizing. Mater. Lett., 2019, 238, 258.

[10]

B.B. Straumal, A.S. Gornakova, O.A. Kogtenkova, S.G. Protasova, V.G. Sursaeva, and B. Baretzky, Continuous and discontinuous grain-boundary wetting in ZnxAl1−x, Phys. Rev. B: Condens. Matter., 78(2008), No. 5, art. No. 054204.

[11]

Meriç C, Sahin S, Yilmaz SS. Investigation of the effect on boride layer of powder particle size used in boronizing with solid boron-yielding substances. Mater. Res. Bull., 2000, 35(13): 2165.

[12]

Hunger HJ, Trute G. Boronizing to produce wear-resistant surface layers. Heat Treat. Met., 1994, 21(2): 31.

[13]

Soydan Y, Köksal S, Demirer A, Çelik V. Sliding friction and wear behavior of pack-boronized AISI 1050. 4140, and 8620 steels. Tribol. Trans., 2008, 51(1): 74.

[14]

Takasugi T, Izumi O. Surface strengthening in aluminium single crystals coated with evaporated films. Acta Metall., 1976, 24(12): 1107.

[15]

Takasugi T, Izumi O. Surface strengthening in aluminium single crystals coated with electro-deposited nickel film. Acta Metall., 1975, 23(9): 1111.

[16]

Hou JX, Zhang M, Ma SG, Liaw PK, Zhang Y, Qiao JW. Strengthening in A10.25CoCrFeNi high-entropy alloys by cold rolling. Mater. Sci. Eng. A, 2017, 707, 593.

[17]

Z.F. Zhang and J. Eckert, Unified tensile fracture criterion, Phys. Rev. Lett., 94(2005), No. 9, art. No. 094301.

[18]

Ahmed F, Bayerlein K, Rosiwal SM, Göken M, Durst K. Stress evolution and cracking of crystalline diamond thin films on ductile titanium substrate: Analysis by micro-Raman spectroscopy and analytical modelling. Acta Mater., 2011, 59(14): 5422.

[19]

Frank S, Handge UA, Olliges S, Spolenak R. The relationship between thin film fragmentation and buckle formation: Synchrotron-based in situ studies and two-dimensional stress analysis. Acta Mater., 2009, 57(5): 1442.

[20]

Guo T, Chen YM, Cao RH, Pang XL, He JY, Qiao LJ. Cleavage cracking of ductile-metal substrates induced by brittle coating fracture. Acta Mater., 2018, 152, 77.

[21]

Leterrier Y, Waller J, Månson JAE, Nairn JA. Models for saturation damage state and interfacial shear strengths in multilayer coatings. Mech. Mater., 2010, 42(3): 326.

[22]

Cramer T, Wanner A, Gumbsch P. Energy dissipation and path instabilities in dynamic fracture of silicon single crystals. Phys. Rev. Lett., 2000, 85(4): 788.

[23]

Garcia JR, Fernández JE, Cuetos JM, Costales FG. Fatigue effect of WC coatings thermal sprayed by HVOF and laser treated, on medium carbon steel. Eng. Fail. Anal., 2011, 18(7): 1750.

[24]

Freund LB. Crack propagation in an elastic solid subjected to general loading—III. Stress wave loading. J. Mech. Phys. Solids, 1973, 21(2): 47.

[25]

Guo T, Qiao LJ, Pang XL, Volinsky AA. Brittle film-induced cracking of ductile substrates. Acta Mater., 2015, 99, 273.

[26]

Seeger A, Diehl J, Mader S, Rebstock H. Work hardening and work softening of face centred cubic metal crystals. Philos. Mag., 1957, 2(15): 323.

[27]

Hughes DA, Hansen N. The microstructural origin of work hardening stages. Acta Mater., 2018, 148, 374.

[28]

Wu SW, Wang G, Yi J, Jia YD, Hussain I, Zhai QJ, Liaw PK. Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy. Mater. Res. Lett., 2017, 5(4): 276.

[29]

Gutierrez-Urrutia I, Raabe D. Grain size effect on strain hardening in twinning-induced plasticity steels. Scripta Mater., 2012, 66(12): 992.

[30]

Rohatgi A, Vecchio KS, Gray GT. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning work hardening and dynamic recovery. Metall. Mater. Trans. A, 2001, 32(1): 135.

[31]

Liu WH, Lu ZP, He JY, Luan JH, Wang ZJ, Liu B, Liu Y, Chen MW, Liu CT. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater., 2016, 116, 332.

[32]

Baker I, Meng FL, Wu M, Brandenberg A. Recrystallization of a novel two-phase FeNiMnAlCr high entropy alloy. J. Alloys Compd., 2016, 656, 458.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/