High Cr(VI) adsorption capacity of rutile titania prepared by hydrolysis of TiCl4 with AlCl3 addition

Shun Wu , Xiao-bo He , Li-jun Wang , Kuo-Chih Chou

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (8) : 1157 -1163.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (8) : 1157 -1163. DOI: 10.1007/s12613-020-1965-8
Article

High Cr(VI) adsorption capacity of rutile titania prepared by hydrolysis of TiCl4 with AlCl3 addition

Author information +
History +
PDF

Abstract

Rutile titania (TiO2) was successfully prepared via hydrolysis of TiCl4 in the presence of AlCl3. The powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. In the present system, AlCl3 functions as a nucleating agent and induces the formation of rutile TiO2. The influences of HCl and isopropanol concentrations on the purity and morphology of the rutile TiO2 were investigated. The purity of the rutile TiO2 increased with increasing concentration of HCl. Evenly dispersed rutile TiO2 particles with a spherical morphology were obtained when the HCl and isopropanol concentrations were 0.5 and 1 mol·L−1, respectively. Furthermore, the prepared TiO2 powders were used in adsorption tests of the heavy metal pollutant Cr(VI). Rutile TiO2 sample S-9 demonstrated greater adsorption performance and a removal efficiency that was greater than 99.95% after 60 min of adsorption when the Cr(VI) concentration was 200 mg·L−1 The maximum adsorption capacity on rutile TiO2 was 28.9 mg·g−1. This work provides an easy path to prepare a high-performance rutile TiO2 adsorbent with potential applications in water pollution treatment.

Keywords

rutile titania / hydrolysis / spherical particles / adsorption

Cite this article

Download citation ▾
Shun Wu, Xiao-bo He, Li-jun Wang, Kuo-Chih Chou. High Cr(VI) adsorption capacity of rutile titania prepared by hydrolysis of TiCl4 with AlCl3 addition. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(8): 1157-1163 DOI:10.1007/s12613-020-1965-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Leary R, Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon, 2011, 49(3): 741.

[2]

Matos J, Chovelon JM, Cordero T, Ferronato C. Influence of surface properties of activated carbon on photocatalytic activity of TiO2 in 4-chlorophenol degradation. Open Environ. Eng. J., 2009, 2(1): 21.

[3]

Jiang DL, Zhang SQ, Zhao HJ. Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/rutile phases. Environ. Sci. Technol., 2007, 41(1): 303.

[4]

O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737.

[5]

Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl. Catal. B, 2004, 49(1): 1.

[6]

Hu YS, Kienle L, Guo YG, Maier J. High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater., 2006, 18(11): 1421.

[7]

Chen JS, Lou XW. The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles. J. Power Sources, 2010, 195(9): 2905.

[8]

Kutláková KM, Tokarský J, Kovář P, Vojtěšková S, Kovářová A, Smetana B, Kukutschová J, Čapková P, Matějka V. Preparation and characterization of photoactive composite kaolinite/TiO2. J. Hazard. Mater., 2011, 188(1–3): 212.

[9]

Hanaor DA, Sorrell CC. Review of the anatase to rutile phase transformation. J. Mater. Sci., 2011, 46(4): 855.

[10]

He M, Yu L, Lu XH, Feng X. Large-scale hydrothermal synthesis of twinned rutile titania. J. Am. Ceram. Soc., 2007, 90(1): 319.

[11]

Gumy D, Morais C, Bowen P, Pulgarin C, Giraldo S, Hajdu R, Kiwi J. Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: Influence of the isoelectric point. Appl. Catal. B, 2006, 63(1–2): 76.

[12]

Cheng HM, Ma JM, Zhao ZG, Qi LM. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater., 1995, 7(4): 663.

[13]

Kullaiah R, Elias LJ, Hegde AC. Effect of TiO2 nanoparticles on hyddrogen evolution reaction activity of Ni coatings. Int. J. Miner. Metall. Mater., 2018, 25(4): 472.

[14]

Shi LY, Li CZ, Fang DY. Research progress in preparation of cajuelite titania powders by chlorination process. Chem. Prod. Technol., 1997, 4, 1.

[15]

Yang SF, Liu YH, Guo YP, Zhao JZ, Xu HF, Wang ZC. Preparation of rutile titania nanocrystals by liquid method at room temperature. Mater. Chem. Phys, 2003, 77(2): 501.

[16]

Gao RQ, Sun Q, Fang Z, Li GT, Jia MZ, Hou XM. Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetices for formaldehyde degradation. Int. J. Miner. Metall. Mater., 2018, 25(1): 73.

[17]

Huang J, Li RX, Tian L, Yu XH, Hou YQ, Li W. Research progress of oxidation mechanism in the chloride process for titanium dioxide production. Chem. Ind. Eng. Prog., 2018, 37(3): 1054.

[18]

Liu YR, Zhang JL, Liu ZJ, Xing XD. Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand. Int. J. Miner. Metall. Mater., 2016, 23(7): 760.

[19]

Zheng WJ, Liu XD, Yan ZY, Zhu LJ. Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4. ACS Nano, 2009, 3(1): 115.

[20]

Zhang QH, Gao L, Guo JK. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl. Catal. B, 2000, 26(3): 207.

[21]

Zhang QH, Gao L, Guo JK. Preparation and characterization of nanosized TiO2 powders from aqueous TiCl4 solution. Nanostruct. Mater., 1999, 11(8): 1293.

[22]

Fang CS, Chen YW. Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution. Mater. Chem. Phys., 2003, 78(3): 739.

[23]

Moghimifar V, Raisi A, Aroujalian A, Bandpey NB. Preparation of nano crystalline titanium dioxide by microwave hydrothermal method. Adv. Mater. Res., 2014, 829, 846.

[24]

Zhou LM, Liang XZ, Cai JQ. Preparation of the shapecontrolled rutile nano-TiO2 by low temperature hydrothermal method. Chin. J. Mater. Res., 2010, 24(2): 208.

[25]

Qian HH, Hu Y, Liu Y, Zhou MJ, Guo CF. Electrostatic self-assembly of TiO2 nanoparticles onto carbon spheres with enhanced adsorption capability for Cr(VI). Mater. Lett, 2012, 68, 174.

[26]

Tel H, Altaş Y, Taner MS. Adsorption characteristics and separation of Cr(III) and Cr(VI) on hydrous titanium(IV) oxide. J. Hazard. Mater., 2004, 112(3): 225.

[27]

Chen ZP, Li Y, Guo M, Xu FY, Wang P, Du Y, Na P. One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III). J. Hazard. Mater., 2016, 310, 188.

[28]

Zhang L, Zhang YG. Adsorption characteristics of hexavalent chromium on HCB/TiO2. Appl. Surf. Sci., 2014, 316, 649.

[29]

Liu SS, Chen YZ, Zhang LD, Hua GM, Xu W, Li N, Zhang Y. Enhanced removal of trace Cr (VI) ions from aqueous solution by titanium oxide-Ag composite adsorbents. J. Hazard. Mater., 2011, 190(1–3): 723.

[30]

Liu SY, Wang LJ, Chou KC. A novel process for simultaneous extraction of iron, vanadium, manganese, chromium, and titanium from vanadium slag by molten salt electrolysis. Ind. Eng. Chem. Res., 2016, 55(50): 12962.

[31]

Li R. Controlled Formation and Charaterization of Titania Microspheres, 2011, Jinan, Uiversity of Jinan

[32]

Shi YY, Zhou YY, Gong LF, Chen YZ. Research on technological conditions of removing aluminum chloride by crude titanium tetrachloride hydrolysis and settling. Titanium Ind. Prog., 2013, 30(4): 36.

[33]

Huang ZL. Analysis of pre-hydrolysis and still bottom hydrolysis during purifying TiCl4. Titanium Ind. Prog., 2011, 28(5): 38.

[34]

Baronov SB, Berdonosov SS, Baronova YV, Melikhov IV. Radiochemical diagnostics of thermal hydrolysis of aluminum trichloride. Radiochemistry, 2004, 46(5): 490.

[35]

Hay MB, Myneni SCB. Geometric and electronic structure of the aqueous Al(H2O)6 3+ complex. J. Phys. Chem. A, 2008, 112(42): 10595.

[36]

Wei ZR, Wu MX, Zhang LM, Liu XH, Zhou Y, Dong GY. Effects of Fe3+ on morphology of rutile TiO2 crystal synthesized by hydrothermal process. J. Synth. Cryst., 2010, 39, 269 No. Supplement

[37]

Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem., 1985, 57(4): 603.

[38]

Asuha S, Zhou XG, Zhao S. Adsorption of methyl orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method. J. Hazard. Mater., 2010, 181(1–3): 204.

[39]

Zhang DY. Synthesis of High Surface area TiO2 Nanoparticles and Their Adsorptive Properties, 2014, Hohhot, Inner Mongolia Normal University

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/