Ultrasonic vibration assisted tungsten inert gas welding of dissimilar metals 316L and L415

Hong-xia Lan , Xiu-fang Gong , Sen-feng Zhang , Liang Wang , Bin Wang , Li-ping Nie

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (7) : 943 -953.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (7) : 943 -953. DOI: 10.1007/s12613-019-1960-0
Article

Ultrasonic vibration assisted tungsten inert gas welding of dissimilar metals 316L and L415

Author information +
History +
PDF

Abstract

Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316L and low alloy high strength steel L415. The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316L and L415 was systematically investigated. The microstructures of both heat affected zones of L415 and weld metal were substantially refined, and the clusters of δ ferrite in traditional tungsten inert gas (TIG) weld were changed to a dispersive distribution via the ultrasonic vibration. The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld. With the application of ultrasonic vibration, the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15% to 31.54%, respectively. The content of Σ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one, indicating an excellent weld metal crack resistance.

Keywords

ultrasonic vibration / dissimilar metal welding / microstructure / mechanical properties / micro-segregation / electron backscatter diffraction

Cite this article

Download citation ▾
Hong-xia Lan, Xiu-fang Gong, Sen-feng Zhang, Liang Wang, Bin Wang, Li-ping Nie. Ultrasonic vibration assisted tungsten inert gas welding of dissimilar metals 316L and L415. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(7): 943-953 DOI:10.1007/s12613-019-1960-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang LJ, Pei Q, Zhang JX, Bi ZY, Li PC. Study on the microstructure and mechanical properties of explosive welded 2205/X65 bimetallic sheet. Mater. Des., 2014, 64, 462.

[2]

Qian XD, Wang Y, Liew JYR, Zhang MH. A load-indentation formulation for cement composite filled pipe-in-pipe structures. Eng. Struct., 2015, 92, 84.

[3]

Kacar R, Acarer M. An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel. J. Mater. Process. Technol., 2004, 152(1): 91.

[4]

Karolczuk A, Kowalski M, Banski R, Zok F. Fatigue phenomena in explosively welded steel-titanium clad components subjected to push-pull loading. Int. J. Fatigue, 2013, 48, 101.

[5]

Ramkumar KD, Singh A, Raghuvanshi S, Bajpai A, Solanki T, Arivarasu M, Arivazhagan N, Narayanan S. Metallurgical and mechanical characterization of dissimilar welds of austenitic stainless steel and super-duplex stainless steel-A comparative study. J. Manuf. Processes, 2015, 19, 212.

[6]

Wang HT, Wang GZ, Xuan FZ, Tu ST. An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint. Mater. Des., 2013, 44, 179.

[7]

Aval HJ. Microstructural evolution and mechanical properties of friction stir-welded C71000 copper-nickel alloy and 304 austenitic stainless steel. Int. J. Miner. Metall. Mater., 2018, 25(11): 1294.

[8]

Hosseini HS, Shamanian M, Kermanpur A. Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds. Mater. Charact., 2011, 62(4): 425.

[9]

Kurt B. The interface morphology of diffusion bonded dissimilar stainless steel and medium carbon steel couples. J. Mater. Process. Technol., 2007, 190(1–3): 138.

[10]

Zhou CS, Huang QY, Guo Q, Zheng JY, Chen XY, Zhu J, Zhang L. Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy. Corros. Sci., 2016, 110, 242.

[11]

Sarikka T, Ahonen M, Mouginot R, Nevasmaa P, Karjalainen-Roikonen P, Ehrnstén U, Hänninen H. Microstructural, mechanical, and fracture mechanical characterization of SA508-Alloy182 dissimilar metal weld in view of mismatch state. Int. J. Press. Vessels Pip., 2016, 145, 13.

[12]

Xu H, Xu MJ, Yu C, Lu H, Wei X, Chen JM, Xu JJ. Effect of the microstructure in unmixed zone on corrosion behavior of 439 tube/308L tube-sheet welding joint. J. Mater. Process. Technol., 2017, 240, 162.

[13]

Watanabe T, Shiroki M, Yanagisawa A, Sasaki T. Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration. J. Mater. Process. Technol., 2010, 210(12): 1646.

[14]

Cui Y, Xu CL, Han Q. Effect of ultrasonic vibration on unmixed zone formation. Scripta Mater., 2006, 55(11): 975.

[15]

Kumar S, Wu CS, Padhy GK, Ding W. Application of ultrasonic vibrations in welding and metal processing: A status review. J. Manuf. Processes, 2017, 26, 295.

[16]

Padhy GK, Wu CS, Gao S, Shi L. Local microstructure evolution in Al 6061-T6 friction stir weld nugget enhanced by ultrasonic vibration. Mater. Des., 2016, 92, 710.

[17]

Yang FZ, Zhou J, Ding RR. Ultrasonic vibration assisted tungsten inert gas welding of dissimilar magnesium alloys. J. Mater. Sci. Technol., 2018, 34(12): 2240.

[18]

Vasantharaja P, Vasudevan M, Palanichamy P. Effect of welding processes on the residual stress and distortion in type 316LN stainless steel weld joints. J. Manuf. Processes, 2015, 19, 187.

[19]

J. Liu, H.Y. Zhu, Z. Li, W.F. Cui, and Y. Shi, Effect of ultrasonic power on porosity, microstructure, mechanical properties of the aluminum alloy joint by ultrasonic assisted laser-MIG hybrid welding, Opt. Laser Technol., 119(2019), art. No. 105619.

[20]

Liu QM, Zhang Y, Song YL, Qi FP, Zhai QJ. Influence of ultrasonic vibration on mechanical properties and microstructure of 1Cr18Ni9Ti stainless steel. Mater. Des., 2007, 28(6): 1949.

[21]

Liu XC, Wu CS, Padhy GK. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scripta Mater., 2015, 102, 95.

[22]

Ahmadnia M, Seidanloo A, Teimouri R, Rostamiyan Y, Titrashi KG. Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of AA6061 joints. Int. J. Adv. Manuf. Technol., 2015, 78(9–12): 2009.

[23]

Amini S, Amiri MR. Study of ultrasonic vibrations’ effect on friction stir welding. Int. J. Adv. Manuf. Technol, 2014, 73(1–4): 127.

[24]

Shi L, Wu CS, Gao S, Padhy GK. Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process. Scripta Mater., 2016, 119, 21.

[25]

Dong HG, Yang LQ, Dong C, Kou S. Improving arc joining of Al to steel and Al to stainless steel. Mater. Sci. Eng, 2012, 534, 424.

[26]

Shi L, Wu CS, Padhy GK, Gao S. Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding. Mater. Des., 2016, 104, 102.

[27]

Zhang HT, Chang Q, Liu JH, Lu H, Wu H, Feng JC. A novel rotating wire GMAW process to change fusion zone shape and microstructure of mild steel. Mater. Lett., 2014, 123, 101.

[28]

Lei YC, Xue HL, Hu WX, Liu ZZ, Yan JC. Effect of arc ultrasonic vibration on microstructure of joint of plasma arc in situ welding of SiCp/6061Al. Sci. Technol. Weld. Joining, 2011, 16(7): 575.

[29]

Sun QJ, Lin SB, Yang CL, Zhao GQ. Penetration increase of AISI 304 using ultrasonic assisted tungsten inert gas welding. Sci. Technol. Weld. Joining, 2009, 14(8): 765.

[30]

Jian X, Xu H, Meek TT, Han Q. Effect of power ultrasound on solidification of aluminum A356 alloy. Mater. Lett., 2005, 59(2–3): 190.

[31]

Dai WL. , Effects of high-intensity ultrasonic-wave emission on the weldability of aluminum alloy 7075-T6. Mater. Lett., 2003, 57(16–17): 2447.

[32]

Xu ZW, Yan JC, Chen W, Yang SQ. Effect of ultrasonic vibration on the grain refinement and SiC particle distribution in Zn-based composite filler metal. Mater. Lett., 2008, 62(17–18): 2615.

[33]

Yuan T, Luo Z, Kou S. Mechanism of grain refining in AZ91 Mg welds by arc oscillation. Sci. Technol. Weld. Joining, 2017, 22(2): 97.

[34]

Morisada Y, Fujii H, Inagaki F, Kamai M. Development of high frequency tungsten inert gas welding method. Mater. Des., 2013, 44, 12.

[35]

Liu XC, Wu CS. Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding. Mater. Des., 2016, 90, 350.

[36]

Wichan C, Loeshpahn S. Effect of filler alloy on microstructure, mechanical and corrosion behaviour of dissimilar weldment between Aisi 201 stainless steel and low carbon steel sheets produced by a gas tungsten arc welding. Adv. Mater. Res., 2012, 581–582, 808.

[37]

Eskin GI. Principles of ultrasonic treatment: Application for light alloys melts. Adv. Perform. Mater., 1997, 4(2): 223.

[38]

Talebi M, Setareh M, Saffar-Avval M, Abardeh RH. Numerical investigation of natural convection heat transfer in a cylindrical enclosure due to ultrasonic vibrations. Ultrasonics, 2017, 76, 52.

[39]

Suslick KS. Sonochemistry. J. Cheminform., 1990, 47(4949): 1439.

[40]

Pocwiardowski P, Lasota H, Ravn C. Near boundary acoustic streaming in Ni-Fe alloy electrodeposition control. ActaAcust. United Acust., 2005, 91(2): 365.

[41]

Zhang CL, Wu MS, Du JL. Improving weld quality by arc-excited ultrasonic treatment. Tsinghua Sci. Technol., 2001, 6(5): 475.

[42]

K.D. Ramkumar, S.S. Prabu, and N. Arivazhagan, Investigation on the fusion zone microstructures and mechanical integrity of AISI 904L and Inconel 625 weld joints, Mater. Res. Express, 6(2019), art. No. 086540.

[43]

Bai GS, Lu SP, Li DZ, Li YY. Intergranular corrosion behavior associated with delta-ferrite transformation of Timodified Super304H austenitic stainless steel. Corros. Sci, 2015, 90, 347.

[44]

Zhou SY, Ma GY, Wu DJ, Chai DS, Lei MK. Ultrasonic vibration assisted laser welding of nickel-based alloy and austenite stainless steel. J. Manuf Processes, 2018, 31, 759.

[45]

Masumura RA, Hazzledine PM, Pande CS. Yield stress of fine grained materials. Acta Mater, 1998, 46(13): 4527.

[46]

Liu B, Eisenlohr P, Roters F, Raabe D. Simulation of dislocation penetration through a general low-angle grain boundary. Acta Mater., 2012, 60(13–14): 5380.

[47]

Wang CF, Wang MQ, Shi J, Hui WJ, Dong H. Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scripta Mater., 2008, 58(6): 492.

[48]

Zhang CY, Wang QF, Ren JX, Li RX, Wang MZ, Zhang FM. Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel. Mater. Sci. Eng. A, 2012, 534, 339.

[49]

Wang L, Wang B, Zhou PS. Misorientation, grain boundary, texture and recrystallization study in X90 hot bend related to mechanical properties. Mater. Sci. Eng. A, 2018, 711, 588.

[50]

Song R, Ponge D, Raabe D, Speer JG, Matlock DK. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater. Sci. Eng. A, 2006, 441(1–2): 1.

[51]

Lehockey EM, Brennenstuhl AM, Thompson I. On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking. Corros. Sci., 2004, 46(10): 2383.

[52]

Chen ZR, Lu YH, Ding XF, Shoji T. Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal. Mater. Charact, 2016, 121, 166.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/