Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition

Yan-zhao Guo , Jin-long Liu , Jiang-wei Liu , Yu-ting Zheng , Yun Zhao , Xiao-lu Yuan , Zi-hao Guo , Li-fu Hei , Liang-xian Chen , Jun-jun Wei , Jian-peng Xing , Cheng-ming Li

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (5) : 703 -712.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (5) : 703 -712. DOI: 10.1007/s12613-019-1944-0
Article

Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition

Author information +
History +
PDF

Abstract

Chemical vapor deposition (CVD)-grown diamond films have been developed as irradiation-resistant materials to replace or upgrade current detectors for use in extreme radiation environments. However, their sensitivity in practical applications has been inhibited by space charge stability issues caused by defects and impurities in pure diamond crystal materials. In this study, two high-quality CVD-grown single-crystal diamond (SCD) detectors with low content of nitrogen impurities were fabricated and characterized. The intrinsic properties of the SCD samples were characterized using Raman spectroscopy, stereomicroscopy, and X-ray diffraction with the rocking curve mode, cathode luminescence (CL), and infrared and ultraviolet-visible-near infrared spectroscopies. After packaging the detectors, the dark current and energy resolution under α particle irradiation were investigated. Dark currents of less than 5 pA at 100 V were obtained after annealing the electrodes, which is comparable with the optimal value previously reported. The detector that uses a diamond film with higher nitrogen content showed poor energy resolution, whereas the detector with more dislocations showed poor charge collection efficiency (CCE). This demonstrates that the nitrogen content in diamond has a significant effect on the energy resolution of detectors, while the dislocations in diamond largely contribute to the poor CCE of detectors.

Keywords

single-crystal diamond / nitrogen impurity / detector / α particle

Cite this article

Download citation ▾
Yan-zhao Guo, Jin-long Liu, Jiang-wei Liu, Yu-ting Zheng, Yun Zhao, Xiao-lu Yuan, Zi-hao Guo, Li-fu Hei, Liang-xian Chen, Jun-jun Wei, Jian-peng Xing, Cheng-ming Li. Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(5): 703-712 DOI:10.1007/s12613-019-1944-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xiong LW, Peng HY, Wang JH, Cui XH, Gong GH. Preparation of high oriented diamond films. Surf. Technol., 2016, 45(11): 10.

[2]

Isberg J, Hammersberg J, Johansson E, Wikström T, Twitchen DJ, Whitehead AJ, Coe SE, Scarsbrook GA. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297(5587): 1670.

[3]

Yarnell A. The many facets of man-made diamonds. Chem. Eng. News, 2004, 82(5): 26.

[4]

Jia X, Yan X, An K, Wei JJ, Chen LX, Liu JL, Li CM. Correlation between optical property and thermal property of free-standing CVD diamond films. Surf. Technol., 2018, 47, 11.

[5]

Sato S, Makino T, Ohshima T, Kamiya T, Hanaizumi O, Grilj V, Skukan N, Pomorski M, Vizkelethy G. Transient current induced in thin film diamonds by swift heavy ions. Diamond Relat. Mater., 2017, 75, 161.

[6]

Tsubota M, Kaneko JH, Miyazaki D, Shimaoka T, Ueno K, Tadokoro T, Chayahara A, Watanabe H, Kato Y, Shikata S, Kuwabara H. High-temperature characteristics of charge collection efficiency using single CVD diamond detectors. Nucl. Instrum. Methods Phys. Res. Sect. A, 2015, 789, 50.

[7]

Tarun A, Lee SJ, Yap CM, Finkelstein KD, Misra DS. Impact of impurities and crystal defects on the performance of CVD diamond detectors. Diamond Relat. Mater., 2016, 63, 169.

[8]

Hodgson M, Lohstroh A, Sellin P. Alpha radiation induced space charge stability effects in semi-insulating silicon carbide semiconductors compared to diamond. Diamond Relat. Mater., 2017, 78, 49.

[9]

Kaneko JH, Fujita F, Konno Y, Gotohet T, Nishi N, Watanabe H, Chayahara A, Umezawa H, Tsubouchi N, Shikata S, Isobe M. Growth and evaluation of self-standing CVD diamond single crystals on off-axis (001)surface of HP/HT type IIa substrates. Diamond Relat. Mater., 2012, 26, 45.

[10]

Tallairea A, Millea V, Brinzaa O, Thiet TNT, Brom JM, Loguinov Y, Katrushaal A, Koliadin A, Acharda J. Thick CVD diamond films grown on high-quality type IIa HPHT diamond substrates from New Diamond Technology. Diamond Relat. Mater., 2017, 77, 146.

[11]

Su JJ, Li YF, Ding MH, Li XL, Liu YQ, Wang G, Tanget WZ. A dome-shaped cavity type microwave plasma chemical vapor deposition reactor for diamond films deposition. Vacuum, 2014, 107, 51.

[12]

Pomorski M, Bedermann E, de Boer W, Furgeri A, Sander C, Morse J. Charge transport properties of singer crystal CVD diamond particle detectors. Diamond Relat. Mater., 2007, 16(4–7): 1066.

[13]

Galbiati A, Lynn S, Oliver K, Schirru F, Nowak T, Marczewska B, Duenas JA, Berjillos R, Martel I, Lavergne L. Performance of monocrystalline diamond radiation detectors fabricated using TiW, Cr/Au and a novel ohmic DLC/Pt/Au electrical contact. IEEE Trans. Nucl. Sci., 2009, 56(4): 1863.

[14]

Hei LF, Liu J, Li CM, Song JH, Tang WZ, Lu FX. Fabrication and characterizations of large homoepitaxial single crystal diamond grown by DC arc plasma jet CVD. Diamond Relat. Mater., 2012, 30, 77.

[15]

De Theije FK, Schermer JJ, Van Enckevort PJW. Effects of nitrogen impurities on the CVD growth of diamond: step bunching in theory and experiment. Diamond Relat. Mater., 2000, 9(8): 1439.

[16]

Secroun A, Brinza O, Tardieu A, Achard J, Silva F, Bonnin X, de Core K, Antonis A, Newton ME, Ristein J, Geithner P, Gicquet A. Dislocation imaging for electronics application crystal selection. Phys. Status Solidi A, 2007, 204(12): 4298.

[17]

Tang CJ, Fu LS, Fernandes AJS, Soares MJ, Cabral G, Neves AJ, Grácio J. Simultaneous formation of silicon carbide and diamond on Si substrates by microwave plasma assisted chemical vapor deposition. New Carbon Mater., 2008, 23(3): 250.

[18]

S. Dunst, H. Sternschulte, and M. Schreck, Growth rate enhancement by nitrogen in diamond chemical vapor deposition—A catalytic effect, Appl. Phys. Lett., 94(2009), art. No. 224101.

[19]

Nistor SV, Stefan M, Ralchenko V, Khomich A, Schoemaker D. Nitrogen and hydrogen in thick diamond films grown by microwave plasma enhanced chemical vapor deposition at variable H2 flow rates. J. Appl. Phys., 2000, 87(12): 8741.

[20]

Khomich AV, Ralchenko VG, Smolin AA, Migulin VV, Pimenov SM, Vlasov II, Konov VI. Optical characterization of thick diamond films produced by microwave plasma chemical vapor deposition. J. Wide Bandgap Mater., 1997, 5(4): 361.

[21]

Kirillov D, Reynolds G. Linewidths of phonon lines of natural and synthetic diamonds. Appl. Phys. Lett., 1994, 65(3): 1641.

[22]

Tran Thi TN, Morse J, Caliste D, Fernandez B, Eon D, Härtwig J, Barbay C, Mer-Calfati C, Tranchant N, Arnault JC, Lafford TA, Baruchel J. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications. J. Appl. Crystallogr., 2017, 50(2): 561.

[23]

Zhao Y, Guo YZ, Lin LZ, Zheng YT, Hei LF, Liu JL, Wei JJ, Chen LX, Li CM. Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD. J. Cryst. Growth, 2018, 491, 89.

[24]

Kurtz AD, Kulin SA, Averbach BL. Effect of dislocations on the minority carrier lifetime in semiconductors. Phys. Rev., 1956, 101, 1285.

[25]

Dean P J. Bound excitons and donor-acceptor pairs in natural and synthetic diamond. Phys. Rev., 1965, 139(2): 588.

[26]

Konno Y, Kaneko J H, Fuijita F, Watanabe H, Hara K, Sato K, Kakimoto A, Shikata S, Homma A, Furasaka M. Improvement of crystal quality of a homoepitaxially grown diamond layer using plasma etching treatment for a diamond substrate. Prog. Nucl. Sci. Technol., 2011, 1, 255.

[27]

Ruan J, Kobashi K, Choyke WJ. On the “band A” emission and boron related luminescence in diamond. Appl. Phys. Lett., 1992, 60(25): 3138.

[28]

D. Takeuchi, H. Watanabe, S. Yamanaka, H. Okushi, H. Sawada, H. Ichinose, T. Sekiguchi, and K. Kajimura, Origin of band-A emission in diamond thin films, Phys. Rev. B: Condens. Matter., 63(2000), No. 24, art. No. 245328.

[29]

Lukosi E, Prelas M, Palsmeier J. Monte Carlo simulations of multiplexed electronic grade CVD diamond for neutron detection. Radiat. Meas., 2012, 47(6): 417.

[30]

Schirru F, Chokheli D, Kiš M. Thin single crystal diamond detectors for alpha particle detection. Diamond Relat. Mater., 2014, 49, 96.

[31]

Berdermann E, Pomorski M, de Boer W, Ciobanu M, Dunst S, Grah C, Kiš M, Koenig W, Lange W, Lohmann W, Lovrinčić R, Moritz P, Morse J, Mueller S, Pucci A, Schreck M, Rahman S, Träger M. Diamond detectors for hadron physics research. Diamond Relat. Mater., 2010, 19(5–6): 358.

[32]

Valentin A, Tardieu A, Mille V, Tallaire A, Achard J, Gicquel A. Polarization effect on time-of-flight measurements performed on a CVD diamond single crystal. Phys. Status Solidi A, 2015, 212, 2636.

[33]

Lütz G. Semiconductor Radiation Detectors: Device Physics, 2007, New York, Springer

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/