Suspension calcination and alkali leaching of low-grade high-sulfur bauxite: Desulfurization, mineralogical evolution and desilication
Hong-fei Wu , Jun-qi Li , Chao-yi Chen , Fei-long Xia , Zhen-shan Xie
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (5) : 602 -610.
Suspension calcination and alkali leaching of low-grade high-sulfur bauxite: Desulfurization, mineralogical evolution and desilication
To enable the utilization of low-grade and high-sulfur bauxite, the suspension calcination was used to remove the sulfur and the activate silica minerals, and the calcinated bauxite was subjected to a desilication process in NaOH solution under atmospheric pressure. The desulfurization and desilication properties and mineralogical evolution were studied by X-ray diffraction, thermogravimetry-differential thermal analysis, scanning electron microscopy, and FactSage methods. The results demonstrate that the suspension calcination method is efficient for sulfur removal: 84.21% of S was removed after calcination at 1000°C for 2 min. During the calcination process, diaspore and pyrite were transferred to α-Al2O3, magnetite, and hematite. The phase transformation of pyrite follows the order FeS2 → Fe3O4 → Fe2O3, and the iron oxides and silica were converted into iron silicate. In the alkali-soluble desilication process, the optimum condition was an alkali solution concentration of 110 g/L, a reaction time of 20 min, and a reaction temperature of 95°C. The corresponding desilication ratio and alumina loss ratio were 44.9% and 2.4%, respectively, and the alumina-to-silica mass ratio of the concentrate was 7.9. The Al2O3·2SiO2, SiO2, and Al2O3 formed during the calcination process could react with NaOH solution, and their activity decreased in the order of Al2O3·2SiO2, SiO2, and Al2O3.
low-grade bauxite / sulfur / suspension calcination / alkali-soluble desilication / Bayer process
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
X.B. Li, Z.Y. Yang, and Y.Z. Long, Effect of calcination process on dissolution properties of diaspore bauxite, Light Met., (1987), No. 4, p. 9. |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
M.S. Liu, P.F. Zhou, and N.Y. Chen, Study on the existence of SiO2 in sodium aluminate solution, Acta Metall. Sin., (1990), No. 3, p. 146. |
| [24] |
H.M. Deng, W.M. Zeng, and N.Y. Chen, Study on the composition and structure of “silica slag” in alumina production, Acta Metall Sin., (1996), No. 12, p. 1248. |
| [25] |
|
/
| 〈 |
|
〉 |