Stress-corrosion behavior and characteristics of the friction stir welding of an AA2198-T34 alloy
Quan-qing Zeng , Song-sheng Zeng , Dong-yao Wang
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (6) : 774 -782.
Stress-corrosion behavior and characteristics of the friction stir welding of an AA2198-T34 alloy
To better understand the stress-corrosion behavior of friction stir welding (FSW), the effects of the microstructure on the stress-corrosion behavior of the FSW in a 2198-T34 aluminum alloy were investigated. The experimental results show that the low-angle grain boundary (LABs) of the stir zone (SZ) of FSW is significantly less than that of heated affected zone (HAZ), thermo-mechanically affected zone (TMAZ), and parent materials (PM), but the grain boundary precipitates (GBPs) T1 (Al2CuLi) were less, which has a slight effect on the stress corrosion. The dislocation density in SZ was greater than that in other regions. The residual stress in SZ was +67 MPa, which is greater than that in the TMAZ. The residual stress in the HAZ and PM is −8 MPa and −32 MPa, respectively, and both compressive stresses. The corrosion potential in SZ is obviously less than that in other regions. However, micro-cracks were formed in the SZ at low strain rate, which indicates that the grain boundary characters and GBPs have no significant effect on the crack initiation in the stress-corrosion process of the AA2198-T34. Nevertheless, the residual tensile stress has significant effect on the crack initiation during the stress-corrosion process.
slow strain rate test / residual stress / grain boundary characteristic / AA2198-T34 alloy / friction stir welding
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
/
| 〈 |
|
〉 |