Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag

Jing Ma , Gui-qin Fu , Wei Li , Miao-yong Zhu

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (3) : 310 -318.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (3) : 310 -318. DOI: 10.1007/s12613-019-1914-6
Article

Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag

Author information +
History +
PDF

Abstract

A study on the melting and viscosity properties of the chromium-containing high-titanium melting slag (CaO-SiO2-MgO-Al2O3-TiO2-Cr2O3) with TiO2 contents ranging from 38.63wt% to 42.63wt% was conducted. The melting properties were investigated with a melting-point apparatus, and viscosity was measured using the rotating cylinder method. The FactSage 7.1 software and X-ray diffraction, in combination with scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), were used to characterize the phase equilibrium and microstructure of chromium-containing high-titanium melting slags. The results indicated that an increase in the TiO2 content led to a decrease in the viscosity of the chromium-containing high-titanium melting slag. In addition, the softening temperature, hemispheric temperature, and flowing temperature decreased with increasing TiO2 content. The amount of crystallized anosovite and sphene phases gradually increased with increasing TiO2 content, whereas the amount of perovskite phase decreased. SEM observations revealed that the distribution of the anosovite phase was dominantly influenced by TiO2.

Keywords

titanium dioxide / Cr-containing high-titanium melting slag / melting property / viscosity / vanadium titanomagnetite

Cite this article

Download citation ▾
Jing Ma, Gui-qin Fu, Wei Li, Miao-yong Zhu. Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(3): 310-318 DOI:10.1007/s12613-019-1914-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hu T, Lv XW, Bai CG. Enhanced reduction of coal-containing titanomagnetite concentrates briquette with multiple layers in rotary hearth furnace. Steel Res. Int., 2016, 87(4): 494.

[2]

Du HG. Principle of Smelting of Vanadium-Bearing Titanomagnetite in Blast Furnace, 1996, Beijing, Science Press, 1.

[3]

Yang ST, Zhou M, Jiang T, Guan SF, Zhang WJ, Xue XX. Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore. Int. J. Miner. Metall. Mater., 2016, 23(12): 1353.

[4]

Lv XW, Lun ZG, Yin JQ, Bai CG. Carbothermic reduction of vanadium titanomagnetite by microwave irradiation and smelting behavior. ISIJ Int., 2013, 53(7): 1115.

[5]

Long HM, Chun TJ, Wang P, Meng QM, Di ZX, Li JX. Grinding kinetics of vanadium-titanium magnetite concentrate in a damp mill and its properties. Metall. Mater. Trans. B, 2016, 47(3): 1765.

[6]

Lv C, Yang K, Wen SM, Bai SJ, Feng QC. A new technique for preparation of high-grade titanium slag from titanomagnetite concentrate by reduction-melting-magnetic separation processing. JOM, 2017, 69(10): 1801.

[7]

Hu T, Lv XW, Bai CG, Lun ZG, Qiu GB. Reduction behavior of Panzhihua titanomagnetite concentrates with coal. Metal. Mater. Trans. B, 2013, 44(2): 252.

[8]

Sui YL, Guo YF, Jiang T, Qiu GZ. Reduction kinetics of oxidized vanadium titano-magnetite pellets using carbon monoxide and hydrogen. J. Alloys Compd., 2017, 706, 546.

[9]

Kolbeinsen L. Modelling of DRI processes with two simultaneously active reducing gases. Steel Res. Int, 2010, 81(10): 819.

[10]

Wu EH, Zhu R, Yang SL, Ma L, Li J, Hou J. Influences of technological parameters on smelting-separation process for metallized pellets of vanadium-bearing titanomagnetite concentrates. J. Iron Steel Res. Int., 2016, 23(7): 655.

[11]

Jiang T, Wang S, Guo YF, Chen F, Zheng FQ. Effects of basicity and MgO in slag on the behaviors of smelting vanadium titanomagnetite in the direct reduction-electric furnace process. Metals, 2016, 6(5): 107.

[12]

Zhang L, Zhang LN, Wang MY, Lou TP, Sui ZT, Jang JS. Effect of perovskite phase precipitation on viscosity of Ti-bearing blast furnace slag under the dynamic oxidation condition. J. Non-Cryst. Solids, 2006, 352(2): 123.

[13]

Li J, Zhang ZT, Wang XD. Precipitation behavior of Ti enriched phase in Ti bearing slag. Ironmaking Steelmaking, 2012, 39(6): 414.

[14]

Li J, Zhang ZT, Zhang M, Guo M, Wang XD. The influence of SiO2 on the extraction of Ti element from Tibearing blast furnace slag. Steel Res. Int., 2011, 82(6): 607.

[15]

Wang S, Guo YF, Jiang T, Chen F, Zheng FQ, Yang LZ, Tang MJ. Behavior of titanium during the smelting of vanadium titanomagnetite metallized pellets in an electric furnace. JOM, 2019, 71(1): 323.

[16]

Liu YR, Zhang JL, Liu ZJ, Xing XD. Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand. Int. J. Miner. Metall. Mater., 2016, 23(7): 760.

[17]

Qiu GB, Chen L, Zhu JY, Lv XW, Bai CG. Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag. ISIJ Int., 2015, 55(7): 1367.

[18]

Park E, Ostrovski O. Reduction of titania-ferrous ore by carbon monoxide. ISIJ Int., 2003, 43(9): 1316.

[19]

Park E, Ostrovski O. Reduction of titania-ferrous ore by hydrogen. ISIJ Int., 2004, 44(6): 999.

[20]

Huitu K, Helle M, Helle H, Kekkonen M, Saxen H. Optimization of midrex direct reduced iron use in ore-based steelmaking. Steel Res. Int., 2015, 86(5): 456.

[21]

Steel Res. Int., 2017, 88(1) art. No. 1600120

[22]

Li W, Fu GQ, Chu MS, Zhu MY. Oxidation induration process and kinetics of Hongge vanadium titanium-bearing magnetite pellets. Ironmaking Steelmaking, 2017, 44(4): 294.

[23]

Steel Res. Int., 2016, 88(5) art. No. 1600296

[24]

Chang ZY, Jiao KX, Zhang JL, Ning XJ, Liu ZQ. Effect of TiO2 and MnO on viscosity of blast furnace slag and thermodynamic analysis. ISIJ Int., 2018, 58(12): 2173.

[25]

Park H, Park JY, Kim GH, Sohn I. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags. Steel Res. Int., 2012, 83(2): 150.

[26]

Gao YH, Bian LT, Liang ZY. Influence of B2O3 and TiO2 on viscosity of titanium-bearing blast furnace slag. Steel Res. Int., 2015, 86(4): 386.

[27]

Xu Ren Ze, Zhang Jian Liang, Ma Ru Ye, Jiao Ke Xin, Zhao Yong An. Influence of TiO2 on the Viscosity of a High Alumina Slag and on Carbon Brick Corrosion. steel research international, 2017, 89(3): 1700353.

[28]

Liao JL, Li J, Wang XD, Zhang ZT. Influence of TiO2 and basicity on viscosity of Ti bearing slag. Ironmaking Steelmaking, 2012, 39(2): 133.

[29]

Sohn I, Wang WL, Matsuura H, Tsukihashi F, Min DJ. Influence of TiO2 on the viscous behavior of calcium silicate melts containing 17 mass% Al2O3 and 10 mass% MgO. ISIJ Int., 2012, 52(1): 158.

[30]

Hu K, Lv XW, Li SP, Lv W, Song B, Han KX. Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for high-titania slag smelting process. Metall. Mater. Trans. B, 2018, 49(4): 1963.

[31]

Yang MR, Lv XW, Wei RR, Bai CG. Wetting behavior of TiO2 by calcium ferrite slag at 1523 K. Metall. Mater. Trans. B, 2018, 49(5): 2667.

[32]

Kim JB, Choi JK, Han IW, Sohn I. High-temperature wettability and structure of the TiO2-MnO-SiO2-Al2O3 welding flux system. J. Non-Cryst. Solids, 2016, 432, 218. Part B

[33]

Dong XJ, Sun HY, She XF, Xue QG, Wang JS. Viscosity characteristics of TiO2-Al2O3-CaO-SiO2 fully liquid slags with high TiO2 content and low mass ratio of CaO to SiO2. J. Univ. Sci. Technol. Beijing, 2013, 35(10): 1297.

[34]

Mysen BO, Ryerson FJ, Virgo D. The influence of TiO2 on the structure and derivative properties of silicate melts. Am. Mineral., 1980, 65(11–12): 1150.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/