Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance

Tao Yang , Hui-juan Liu , Fan Bai , En-hui Wang , Jun-hong Chen , Kuo-Chih Chou , Xin-mei Hou

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (2) : 220 -231.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (2) : 220 -231. DOI: 10.1007/s12613-019-1910-x
Article

Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance

Author information +
History +
PDF

Abstract

Currently, developing supercapacitors with robust cycle stability and suitability for wide-temperature-range operations is still a huge challenge. In the present work, few-layer hexagonal boron nitride nanosheets (h-BNNSs) with a thickness of 2–4 atomic layers were fabricated via vacuum freeze-drying and nitridation. Then, the h-BNNSs/reduced graphene oxide (rGO) composite were further prepared using a hydrothermal method. Due to the combination of two two-dimensional (2D) van der Waals-bonded materials, the as-prepared h-BNNSs/rGO electrode exhibited robustness to wide-temperature-range operations from −10 to 50°C. When the electrodes worked in a neutral aqueous electrolyte (1 M Na2SO4), they showed a great stable cycling performance with almost 107% reservation of the initial capacitance at 0°C and 111% at 50°C for 5000 charge—discharge cycles.

Keywords

few-layer / hexagonal boron nitride / wide-temperature-range operation / cycling performance

Cite this article

Download citation ▾
Tao Yang, Hui-juan Liu, Fan Bai, En-hui Wang, Jun-hong Chen, Kuo-Chih Chou, Xin-mei Hou. Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(2): 220-231 DOI:10.1007/s12613-019-1910-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang L, Hu XS, Wang ZP, Sun FC, Dorrell DG. A review of supercapacitor modeling, estimation, and applications: A control/management perspective. Renewable Sustainable Energy Rev., 2018, 81, 1868.

[2]

Li WJ, Liu Q, Chen SL, Fang Z, Liang X, Wei GD, Wang L, Yang WY, Ji Y, Mai LQ. Single-crystalline integrated 4H-SiC nanochannel array electrode: Toward high-performance capacitive energy storage for robust wide-temperature operation. Mater. Horiz., 2018, 5(5): 883.

[3]

Ren M, Zhang CY, Wang YL, Cai JJ. Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors. Int. J. Miner. Metall. Mater., 2018, 12(25): 1482.

[4]

Ghasemi majd Z, Amiri P, Taghizadeh SF. Ab-initio study of structural and electronic properties of WS2/h-BN van der Waals heterostructure. Surf. Sci., 2018, 672–673, 13.

[5]

Cao Z, Bu JH, Zhong ZQ, Sun CY, Zhang QS, Wang JD, Chen SH, Xie XW. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over BN-supported Pt catalysts at room temperature. Appl. Catal. A, 2019, 578, 105.

[6]

Zhang J, Zhang HL, Zhou P, Qing PH, Xu HB, Zhang Y. Porous hexagonal boron nitride nanosheets with large adsorption capacity for Cu2+ synthesized through a two-step roasting process. Mater. Lett., 2018, 213, 211.

[7]

Lale A, Bernard S, Demirci UB. Boron nitride for hydrogen storage. ChemPlusChem, 2018, 83(10): 893.

[8]

Z.Y. Liu, Y. Fang, H.C. Jia, C. Wang, Q.Q. Song, L.L. Li, J. Lin, Y. Huang, C. Yu, and C.C. Tang, Novel multifunctional cheese-like 3D carbon-BN as a highly efficient adsorbent for water purification, Sci. Rep., 8(2018), art. No. 1104.

[9]

Wu PW, Zhu WS, Dai BL, Chao YH, Li CF, Li HP, Zhang M, Jiang W, Li HM. Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization. Chem. Eng. J., 2016, 301, 123.

[10]

Ji YX, Calderon B, Han YM, Cueva P, Jungwirth NR, Alsalman HA, Hwang J, Fuchs GD, Muller DA, Spencer MG. Chemical vapor deposition growth of large single-crystal mono-, bi-, tri-layer hexagonal boron nitride and their interlayer stacking. ACS Nano, 2017, 11(12): 12057.

[11]

Han Y, Liu SY, Cui L, Xu L, Xie J, Xia XK, Hao WK, Wang B, Li H, Gao J. Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries. Int. J. Miner. Metall. Mater., 2018, 25(1): 88.

[12]

Vellacheri R, Al-Haddad A, Zhao HP, Wang WX, Wang CL, Lei Y. High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy, 2014, 8, 231.

[13]

Han Wei-Qiang, Wu Lijun, Zhu Yimei, Watanabe Kenji, Taniguchi Takashi. Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Applied Physics Letters, 2008, 93(22): 223103.

[14]

Yankowitz M, Ma Q, Jarillo-Herrero P, LeRoy BJ. Van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys., 2019, 1(2): 112.

[15]

Chang CK, Kataria S, Kuo CC., et al Band gap engineering of chemical vapor deposited graphene by in situ BN doping. ACS Nano, 2013, 7(2): 1333.

[16]

Li XL, Liu J, Ding K, Zhao XH, Li S, Zhou WG, Liang BL. Temperature dependence of raman-active inplane E2g phonons in layered graphene and h-BN flakes. Nanoscale Res. Lett., 2018, 13(1): 25.

[17]

Wang MJ, Jiao ZY, Chen YP, Hou X, Fu L, Wu YM, Li SY, Jiang N, Yu JH. Enhanced thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet composites at low filler content. Composites Part A, 2018, 109, 321.

[18]

Li Q, Yang T, Yang QF, Wang F, Chou KC, Hou XM. Porous hexagonal boron nitride whiskers fabricated at low temperature for effective removal of organic pollutants from water. Ceram. Int., 2016, 42(7): 8754.

[19]

Sun JY, Lu C, Song YZ, Ji QQ, Song XJ, Li QC, Zhang YF, Zhang L, Kong J, Liu ZF. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem. Soc. Rev., 2018, 47(12): 4242.

[20]

Du ZH, Zeng XM, Zhu MM, Kanta A, Liu Q, Li JZ, Kong LB. Alkyl ethoxylate assisted liquid phase exfoliation of BN nanosheet and its application as interphase for oxide/oxide composites. Ceram. Int., 2018, 44(17): 21461.

[21]

Wu PW, Zhu WS, Chao YH, Zhang JS, Zhang PF, Zhu HY, Li CF, Chen ZG, Li HM, Dai S. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization. Chem. Commun., 2016, 52(1): 144.

[22]

Tu XF, Zhou YK, Song YJ. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for highperformance lithium-ion batteries. Appl. Surf. Sci., 2017, 400, 329.

[23]

Guo DY, Zhao YJ, Ling C, Li JB, Jin HB. Vacuum freeze-drying assisted preparation of spherical AlB2 powders with ultrafine microstructure. Ceram. Int., 2018, 44(6): 6451.

[24]

Annie D, Chandramouli V, Anthonysamy S, Ghosh C, Divakar R. Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders. J. Nucl. Mater., 2017, 484, 51.

[25]

Liu RP, Xu TT, Wang CA. A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceram. Int., 2016, 42(2): 2907.

[26]

Luo Wei, Wang Yanbin, Hitz Emily, Lin Yi, Yang Bao, Hu Liangbing. Solution Processed Boron Nitride Nanosheets: Synthesis, Assemblies and Emerging Applications. Advanced Functional Materials, 2017, 27(31): 1701450.

[27]

Xi XL, Nie ZR, Yang JC, Fu XT, Wang W, Zuo TY. Preparation and characterization of Ce-W composite nanopowder. Mater. Sci. Eng. A, 2005, 394(1–2): 360.

[28]

Luan WL, Gao L, Guo JK. Study on drying stage of nanscale powder preparation. Nanostruct. Mater., 1998, 10(7): 1119.

[29]

Tay RY, Griep MH, Mallick G, Tsang SH, Singh RS, Tumlin T, Teo EHT, Karna SP. Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper. Nano Lett., 2014, 14(2): 839.

[30]

Wen Yao, Shang Xunzhong, Dong Ji, Xu Kai, He Jun, Jiang Chao. Ultraclean and large-area monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nanotechnology, 2015, 26(27): 275601.

[31]

Watanabe D, Aoki H, Moriyama R, Mazumder MK, Kimura C, Sugino T. Characterization of BCN film after wet process for interconnection integration. Diamond Relat. Mater., 2008, 17(4–5): 669.

[32]

Wada Y, Yap YK, Yoshimura M, Mori Y, Sasaki T. The control of BN and BC bonds in BCN films synthesized using pulsed laser deposition. Diamond Relat. Mater., 2000, 9(3–6): 620.

[33]

Tsai PC. The deposition and characterization of BCN films by cathodic arc plasma evaporation. Surf. Coat. Technol., 2007, 201(9–11): 5108.

[34]

Prakash A, Sundaram KB. Deposition and XPS studies of dual sputtered BCN thin films. Diamond Relat. Mater., 2016, 64, 80.

[35]

C.J. Huang, C. Chen, M.W. Zhang, L.H. Lin, X.X. Ye, S. Lin, M. Antonietti, and X.C. Wang, Carbon-doped BN nanosheets for metal-free photoredox catalysis, Nat. Commun., 6(2015), art. No. 7698.

[36]

Mannan MA, Noguchi H, Kida T, Nagano M, Hirao N, Baba Y. Chemical bonding states and local structures of the oriented hexagonal BCN films synthesized by microwave plasma CVD. Mater. Sci. Semicond. Process., 2008, 11(3): 100.

[37]

Wang LC, Ni SQ, Guo CL, Qian YT. One pot synthesis of ultrathin boron nitride nanosheet-supported nanoscale zerovalent iron for rapid debromination of polybrominated diphenyl ethers. J. Mater. Chem. A, 2013, 1(21): 6379.

[38]

Guo XM, Feng BX, Gai LG, Zhou JH. Reduced graphene oxide/polymer dots-based flexible symmetric supercapacitors delivering an output potential of 1.7 V with electrochemical charge injection. Electrochim. Acta, 2019, 293, 399.

[39]

Hou XM, Li Q, Zhang LQ, Yang T, Chen JH, Su L. Tunable preparation of chrysanthemum-like titanium nitride as flexible electrode materials for ultrafastcharging/discharging and excellent stable supercapacitors. J. Power Sources, 2018, 396, 319.

[40]

Ye ZQ, Wang FJ, Jia C, Mu KG, Yu M, Lv YY, Shao ZQ. Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. Chem. Eng. J., 2017, 330, 1166.

[41]

Huang SG, Sun J, Yan J, Liu JQ, Wang WJ, Qin QQ, Mao WP, Xu W, Wu YC, Wang JF. Enhanced high-temperature cyclic stability of Al-doped manganese dioxide and morphology evolution study through in situ NMR under high magnetic field. ACS Appl. Mater. Interfaces, 2018, 10(11): 9398.

[42]

Lv WW, Xue RP, Chen S, Jiang MJ. Temperature stability of symmetric activated carbon supercapacitors assembled with in situ electrodeposited poly(vinyl alcohol) potassium borate hydrogel electrolyte. Chin. Chem. Lett., 2018, 29(4): 637.

[43]

Weng YT, Pan HA, Wu NL, Chen GZ. Titanium carbide nanocube core induced interfacial growth of crystalline polypyrrole/polyvinyl alcohol lamellar shell for wide-temperature range supercapacitors. J. Power Sources, 2015, 274, 1118.

[44]

Meng A, Yang Z, Li ZJ, Yuan XC, Zhao J. Nano-chain architectures constructed by hydrangea-like MoS2 nanoflowers and SiC nanowires: Synthesis, mechanism and the enhanced electrochemical and wide-temperature properties as an additive-free negative electrode for supercapacitors. J. Alloys Compd., 2018, 746, 93.

[45]

Ng CH, Lim HN, Hayase S, Zainal Z, Shafie S, Huang NM. Effects of temperature on electrochemical properties of bismuth oxide/manganese oxide pseudocapacitor. Ind. Eng. Chem. Res., 2018, 57(6): 2146.

[46]

Wang JG, Yang Y, Huang ZH, Kang F. Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte. J. Power Sources, 2013, 224, 86.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/