Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production

Fabiane Carvalho Ballotin , Mayra Nascimento , Sara Silveira Vieira , Alexandre Carvalho Bertoli , Ottávio Carmignano , Ana Paula de Carvalho Teixeira , Rochel Montero Lago

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (1) : 46 -54.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (1) : 46 -54. DOI: 10.1007/s12613-019-1891-9
Article

Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production

Author information +
History +
PDF

Abstract

In this work, different magnesium silicate mineral samples based on antigorite, lizardite, chrysotile (which have the same general formula Mg3Si2O5(OH)4), and talc (Mg3Si4O10(OH)2) were reacted with KOH to prepare catalysts for biodiesel production. Simple impregnation with 20wt% K and treatment at 700-900°C led to a solid-state reaction to mainly form the K2MgSi04 phase in all samples. These results indicate that the K ion can diffuse into the different Mg silicate structures and textures, likely through intercalation in the interlayer space of the different mineral samples followed by dehydroxylation and K2MgSi04 formation. All the materials showed catalytic activity for the transesterification of soybean oil (1:6 of oil: methanol molar ratio, 5wt% of catalyst, 60°C). However, the best results were obtained for the antigorite and chrysotile precursors, which are discussed in terms of mineral structure and the more efficient formation of the active phase K2MgSi04.

Keywords

silicate / serpentinite / lizardite / antigorite / talc / chrysotile / biodiesel

Cite this article

Download citation ▾
Fabiane Carvalho Ballotin, Mayra Nascimento, Sara Silveira Vieira, Alexandre Carvalho Bertoli, Ottávio Carmignano, Ana Paula de Carvalho Teixeira, Rochel Montero Lago. Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(1): 46-54 DOI:10.1007/s12613-019-1891-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auzende AL, Daniel I, Reynard B, Lemaire C, Guyot F. High-pressure behavior of serpentine minerals: A Raman spectroscopic study. Phys. Chem. Miner., 2004, 31, 269.

[2]

Guillot S, Schwartz S, Reynard B, Agard P, Prigent C. Tectonic significance of serpentinites. Tectonophysics, 2015, 646, 1.

[3]

Evans BW, Hattori K, Baronnet A. Serpentinite: what, why, where?. Elements, 2013, 9, 99.

[4]

Mossman BT, Bignon J, Corn M, Seaton A, Gee JB. Asbestos: scientific developments and implications for public policy. Science, 1990, 247, 294.

[5]

Capitani GC, Mellini M. The crystal structure of a second antigorite polysome (m = 16), by single-crystal synchrotron diffraction. Am. Mineral., 2006, 91, 394.

[6]

Claverie M, Dumas A, Careme C, Poirier M, Le Roux C, Micoud P, Martin F, Aymonier C. Synthetic talc and talc-like structures: Preparation, features and applications. Chemistry, 2018, 24, 519.

[7]

Vieira SS, Paz GM, Teixeira APC, Moura EM, Carmignano OR, Sebastiao RCO, Lago RM. Solid state reaction of serpentinite Mg3Si2O5(OH)4 with Li+ to produce Li4SiO4/MgO composites for the efficient capture of CO2. J. Environ. Chem. Eng., 2018, 6, 4189.

[8]

Paz GM, Vieira SS, Bertoli AC, Ballotin FC, de Moura EM, Teixeira APC, Costa D, Carmignano O, Lago RM. Solid state reaction of serpentinite Mg3Si2O5(OH)4 with NaOH to produce a new basic catalytic phase Na2Mg2Si2O7 for biodiesel production. J. Braz. Chem. Soc, 2018, 29, 1823

[9]

Ballotin FC, Cibaka TE, Ribeiro-Santos TA, Santos EM, de Carvalho Teixeira AP, Lago RM. K2MgSiO4: A novel K+-trapped biodiesel heterogeneous catalyst produced from serpentinite Mg3Si2O5(OH)4. J. Mol. Catal. A: Chem., 2016, 422, 258.

[10]

Schuchardt U, Sercheli R, Vargas RM. Transesterification of vegetable oils: A review. J. Braz. Chem. Soc, 1998, 9, 199.

[11]

Teixeira APC, Santos EM, Vieira AFP, Lago RM. Use of chrysotile to produce highly dispersed K-doped MgO catalyst for biodiesel synthesis. Chem. Eng. J., 2013, 232, 104.

[12]

Shakoor A, Thomas NL. Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites. Pofym. Eng. Sci., 2014, 54, 64

[13]

Coleman RG. Petrologic and geophysical nature of serpentinites. Geol. Soc. Am. Bull, 1971, 82, 897.

[14]

M. Wesolowski, Thermal decomposition of talc: A review, Thermochim. Acta, 78(1984), No. 1–3, p. 395.

[15]

Menzel MD, Garrido CJ, Sanchez-Vizcaino VL, Marchesi C, Hidas K, Escayola MP, Huertas AD. Carbonation of mantle peridotite by CO2-rich fluids: The formation of listvenites in the Advocate ophiolite complex (Newfoundland, Canada). Lithos, 2018, 323, 238.

[16]

Liu X, Liu X, Hu Y. Investigation of the thermal decomposition of talc. Clays Clay Miner., 2014, 62, 137.

[17]

Viti C. Serpentine minerals discrimination by thermal analysis. Am. Mineral, 2010, 95, 631.

[18]

Maleki H, Kazemeini M, Bastan F. Transesterification of canola oil to biodiesel using CaO/Talc nanopowder as a mixed oxide catalyst. Chem. Eng. Technol, 2017, 40, 1923.

[19]

Gualtieri AF, Gandolfi NB, Pollastri S, Burghammer M, Tibaldi E, Belpoggi F, Pollok K, Langenhorst F, Vigliaturo R, Drazic G. New insights into the toxicity of mineral fibers: A combined in situ synchrotron μ-XRD and HR-TEM study of chrysotile, crocidolite, and erionite fibers found in the tissues of Sprague-Dawley rats. Toxicol. Lett, 2017, 274, 20.

[20]

Yarborough CM. The risk of mesothelioma from exposure to chrysotile asbestos. Curr. Opin. Pulm. Med., 2007, 13, 334.

[21]

Ersoy B, Dikmen S, Yildiz A, Gören R, Elitok Ö. Mineralogical and physicochemical properties of talc from Emirdağ, Afyonkarahisar. Turk. J. Earth Sci., 2013, 22, 632

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/