Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in-situ reaction

Tian-xing Lu , Cun-guang Chen , Zhi-meng Guo , Pei Li , Ming-xing Guo

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (11) : 1477 -1483.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (11) : 1477 -1483. DOI: 10.1007/s12613-019-1889-3
Article

Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in-situ reaction

Author information +
History +
PDF

Abstract

Tungsten nanoparticle-strengthened Cu composites were prepared from nanopowder synthesized by a sol-gel method and in-situ hydrogen reduction. The tungsten particles in the Cu matrix were well-dispersed with an average size of approximately 100–200 nm. The addition of nanosized W particles remarkably improves the mechanical properties, while the electrical conductivity did not substantially decrease. The Cu-W composite with 6wt% W has the most comprehensive properties with an ultimate strength of 310 MPa, yield strength of 238 MPa, hardness of HV 108 and electrical conductivity of 90% IACS. The enhanced mechanical property and only a small loss of electrical conductivity demonstrate the potential of this new strategy to prepare W nanoparticle-strengthened Cu composites.

Keywords

copper composites / second phase strengthening / tungsten / sol-gel method

Cite this article

Download citation ▾
Tian-xing Lu, Cun-guang Chen, Zhi-meng Guo, Pei Li, Ming-xing Guo. Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in-situ reaction. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(11): 1477-1483 DOI:10.1007/s12613-019-1889-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li G, Thomas BG, Stubbins JF. Modeling creep and fatigue of copper alloys. Metall. Mater. Trans. A, 2000, 31, 2491.

[2]

Carro G, Muñoz A, Monge MA, Savoini B, Pareja R, Ballesteros C, Adeva P. Fabrication and characterization of Y2O3 dispersion strengthened copper alloys. J. Nucl. Mater., 2014, 455, 655.

[3]

He SJ, Jiang YB, Xie JX, Li YH, Yue LJ. Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys. Int. J. Miner. Metall. Mater., 2018, 25, 641.

[4]

Groza J. Heat-resistant dispersion-strengthened copper alloys. J. Mater. Eng. Perform., 1992, 1, 113.

[5]

Karakulak E. Characterization of Cu-Ti powder metallurgical materials. Int. J. Miner. Metall. Mater., 2017, 24, 83.

[6]

Lee DW, Kim BK. Nanostructured Cu-Al2O3 composite produced by thermochemical process for electrode application. Mater. Lett., 2004, 58, 378.

[7]

Wagih A, Fathy A. Improving compressibility and thermal properties of Al-Al2O3 nanocomposites using Mg particles. J. Mater. Sci., 2018, 53, 11393.

[8]

Suryanarayana C, Al-aqeeli N. Mechanically alloyed nanocomposites. Prog. Mater. Sci., 2013, 58, 383.

[9]

Hwang SJ, Lee JH. Mechanochemical synthesis of Cu-Al2O3 nanocomposites. Mater. Sci. Eng. A, 2005, 405, 140.

[10]

Aghamiri SMS, Oono N, Ukai S, Kasada R, Noto H, Hishinuma Y, Muroga T. Brass-texture induced grain structure evolution in room temperature rolled ODS copper. Mater. Sci. Eng. A, 2019, 749, 118.

[11]

Abu-Oqail A, Wagih A, Fathy A, Elkady O, Kabeel AM. Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites. Ceram. Int., 2019, 45, 5866.

[12]

Wagih A, Abu-Oqail A, Fathy A. Effect of GNPs content on thermal and mechanical properties of a novel hybrid Cu-Al2O3/GNPs coated Ag nanocomposite. Ceram. Int., 2019, 45, 1115.

[13]

Baghani M, Aliofkhazraei M, Askari M. Cu-Zn-Al2O3 nanocomposites: study of microstructure, corrosion, and wear properties. Int. J. Miner. Metall. Mater., 2017, 24, 462.

[14]

Baghani M, Aliofkhazraei M. nano-composite: mechanical alloying, microstructure, and tribo-logical properties. Int. J. Miner. Metall. Mater., 2017, 24, 1321.

[15]

Chi F, Schmerling M, Eliezer Z, Marcus HL, Fine ME. Preparation of Cu-TiN alloy by external nitridation in combination with mechanical alloying. Mater. Sci. Eng. A, 1995, 190, 181.

[16]

Tjong SC, Lau KC. Tribological behaviour of SiC particle-reinforced copper matrix composites. Mater. Lett., 2000, 43, 274.

[17]

Groza JR, Gibeling JC. Principles of particle selection for dispersion-strengthened copper. Mater. Sci. Eng. A, 1993, 171, 115.

[18]

Dong LL, Ahangarkani M, Chen WG, Zhang YS. Recent progress in development of tungsten-copper composites: Fabrication, modification and applications. Int. J. Refract. Met. Hard Mater., 2018, 75, 30.

[19]

Z.M. Xie, R Liu, S Miao, X.D. Yang, T Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, G.N. Luo, Y.Y. Lian, and X. Liu, Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature, Sci. Rep., 5(2015), art. No. 16014.

[20]

Atwater MA, Roy D, Darling KA, Butler BG, Scat-tergood RO, Koch CC. The thermal stability of nanocrystal-line copper cryogenically milled with tungsten. Mater. Sci. Eng. A, 2012, 558, 226.

[21]

Raghu T, Sundaresan R, Ramakrishnan P, Rama Mohan TR. Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying. Mater. Sci. Eng. A, 2001, 304-306, 438.

[22]

Guo YJ, Guo HT, Gao BX, Wang XG, Hu YB, Shi ZQ. Rapid consolidation of ultrafine grained W-30wt%Cu composites by field assisted sintering from the sol-gel prepared nanopowders. J. Alloys Compd., 2017, 724, 115

[23]

Jiang YW, Yang SG, Hua ZH, Huang HB. Sol-gel autocombustion synthesis of metals and metal alloys. Angew. Chem. Int. Ed., 2009, 48, 8529.

[24]

Mula S, Setman D, Youssef K, Scattergood RO, Koch CC. Structural evolution of Cu(1-X)YX alloys prepared by mechanical alloying: Their thermal stability and mechanical properties. J. Alloys Compd., 2015, 627, 108.

[25]

Miedema AR, de Chatel PF, de Boer FR. Cohesion in alloys—Fundamentals of a semi-empirical model. Physica B+C, 1980, 100, 1.

[26]

Ardestani M, Arabi H, Razavizadeh H, Rezaie HR, Jankovic B, Mentus S. An investigation about the activation energies of the reduction transitions of fine dispersed CuWO4-x/WO3-x oxide powders. Int. J. Refract. Met. Hard Mater., 2010, 28, 383.

[27]

Zhou Y, Sun QX, Liu R, Wang XP, Liu CS, Fang QF. Microstructure and properties of fine grained W-15wt%Cu composite sintered by microwave from the sol-gel prepared powders. J. Alloys Compd., 2013, 547, 18.

[28]

Basu AK, Sale FR. Copper-tungsten composite powders by the hydrogen reduction of copper tungstate. J. Mater. Sci., 1978, 13, 2703.

[29]

Wang KF, Sun GD, Wu YD, Zhang GH. Fabrication of ultrafine and high-purity tungsten carbide powders via a carbothermic reduction-carburization process. J. Alloys Compd., 2019, 784, 362.

[30]

Alam SN. Synthesis and characterization of W-Cu nano-composites developed by mechanical alloying. Mater. Sci. Eng. A, 2006, 433, 161.

[31]

North American Hoganas High Alloys LLC. GLIDCOP® Dispersion Strengthened Copper, North American Hoganas High Alloys LLC, Pennsylvania, 2019

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/