Nd-Mg-Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics
Yuan Li , Li-na Cheng , Wen-kang Miao , Chun-xiao Wang , De-zhi Kuang , Shu-min Han
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (3) : 391 -400.
Nd-Mg-Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics
To improve the electrochemical kinetics of Nd-Mg-Ni alloy electrodes, the alloy surface was modified with highly conductive reduced graphene oxide (rGO) via a chemical reduction process. Results indicated that rGO sheets uniformly coated on the alloy surface, yielding a three-dimensional network layer. The coated surfaces contained numerous hydrophilic functional groups, leading to better wettability of the alloy in aqueous alkaline media. This, in turn, increased the concentration of electro-active species at the interface between the electrode and the electrolyte, improving the electrochemical kinetics and the rate discharge of the electrodes. The high rate dischargeability at 1500 mA·g−1 increased from 53.2% to 83.9% after modification. In addition, the modification layer remained stable and introduced a dense metal oxide layer to the alloy surface after a long cycling process. Therefore, the protective layer prevented the discharge capacity from quickly decreasing and improved cycling stability.
hydrogen storage alloys / surface modification / graphene oxide / electrochemical properties / kinetics
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
/
| 〈 |
|
〉 |